A New Oxindole Synthesis

Ian Fleming,* Roger C. Moses, Moana Tercel and Joseph Ziv
University Chemical Laboratory, Lensfield Road, Cambridge CB2 1EW, UK

Abstract

A quaternary carbon atom can be set up by irradiation of the N-methylaniline enamine 5 of adamantane-2-carbaldehyde giving the indoline 6 in poor yield. This product was converted into the spiro-oxindole 8, but only in very low yield. Quaternary carbon atoms can be set up more efficiently from the ketone group of adamantanone in two high-yielding steps by conjugate addition of appropriate organometallic carbon nucleophiles to the electrophilic alkenes 9 and 25 , obtained by condensation of adamantanone with either Meldrum's acid or nitromethane. By use of the latter intermediate 25, a high yielding, eight-step conversion of adamantanone into the corresponding spiro-oxindole 8 can be carried out. Conjugate addition of triphenylaluminium to the corresponding nitroalkene 33 derived from 2-oxaadamantan-4-one 32 takes place with high stereoselectivity in the sense appropriate for a synthesis of gelsemine, with the phenyl group in the product 34 cis to the oxygen bridge.

In our approach ${ }^{1}$ to the synthesis of the alkaloid gelsemine 3, ${ }^{2}$ we plan to convert the ketone 1 into the spiro-oxindole 2. Several years ago, we reported a pair of stereochemically complementary oxindole syntheses of this type, ${ }^{3}$ one of which, we hoped. would have the correct stereoselectivity to achieve this end. A little later, we reported the synthesis of the ketone 1, ${ }^{1}$ but, to our dismay, neither oxindole synthesis was successful in giving either the oxindole 2 or its stereoisomer at C-7. Although we had no evidence on this point, we argued that the neighbouring $\mathrm{C}-\mathrm{O}$ bond might be detrimental in some way to the carbocation chemistry used in the two routes, both of which depended upon the orderly behaviour of a cation at C-7.4,+ To avoid carbocation chemistry, we tried a Brunner oxindole synthesis, for which we prepared the way ${ }^{6}$ by improving upon the rather harsh conditions under which it had traditionally been carried out. ${ }^{7}$ The modified Brunner synthesis also failed, ${ }^{8}$ most likely because the neighbouring oxygen departed as a nucleofuge from the intermediate, which is a carbanion at C-7.

$2 \mathrm{R}=\mathrm{EtO}_{2} \mathrm{C}$
$3 \mathrm{R}=\mathrm{Me}$

We faced, then, the need for a new oxindole synthesis. It should allow the creation of the quaternary centre without, if possible, using carbocation chemistry. It should also avoid carbanion chemistry at C-7, although this was not an overwhelmingly compelling constraint, since the reversibility of the oxygen leaving as a nucleofuge might make it inoffensive, and the Brunner synthesis, using harsh conditions and a di- or tri-anion, might not be typical. It should also introduce the aryl group onto C-7 after the other $\mathrm{C}-\mathrm{C}$ bond has been formed, because it is likely that the lower surface of the molecule (as drawn) is the less hindered. Our originally having two oxindole syntheses lined up was precautionary: at that stage in our work we did not know that the vinyl group would already have been established on the top surface, shielding an incoming aryl group

[^0]from attacking C-7 with a 1,3-diaxial interaction. Other people, facing the same problem, have developed solutions using radical chemistry ${ }^{9}$ or a Heck reaction, ${ }^{10}$ but these possibilities are not available to us without considerable backtracking, because they require a double bond between C-3 and C-7.

The sum of all these constraints looks formidable, but we have found two ways of staying within them, and report our results here, using adamantanone 4 as a model for the ketone 1. We have found three methods for establishing a quaternary centre, and one that has led to a good oxindole synthesis.

One way is to use a pericyclic process, and the version that we have had some success with is the $\left[{ }_{\pi} 6\right]$ photochemical cyclisation ${ }^{11}$ of the enamine 5, which established the quaternary centre in the indoline 6 in 33% yield. Oxidation of this compound was selective for the formation of the N formylindoline 7 , but the oxindole 8 was a minor by-product (Scheme 1), readily recognisable, because we had made it before. ${ }^{3}$ Although this route is fairly short, involving the homologation of adamantanone 4 to adamantane-2-carbaldehyde, ${ }^{12}$ two low yields in a row, and the prospect that the lower pyrrolidine ring in the ketone 1 might interfere with the oxidation reaction that we would have to carry out in the full synthesis, led us not to pursue this route.

Scheme 1 Reagents and conditions: i, $\mathrm{Me}_{2} \mathrm{~S}(: \mathrm{O})=\mathrm{CH}_{2} ; \mathrm{ii}, \mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}$; iii, PhNHMe; iv, $h v ;$ v, MnO_{2}

A more powerful approach that stays within our constraints is to use the conjugate addition of an organometallic aryl nucleophile to an electrophilic alkene to be derived by condensation of the ketone with malonate derivatives or with
nitromethane. This avoids cationic, anionic and even radical chemistry at C-7, and seemed likely to lead to the aryl ring arriving on the lower face. Accordingly, we invested more of our time on this approach than on any other.

Our first substrate was the known ${ }^{13}$ alkene 9 derived from adamantanone and Meldrum's acid, to which conjugate addition ought to be particularly easy. ${ }^{14}$ Copper-catalysed addition of phenylmagnesium bromide gave the ester 10 in 87% yield, and the yield was only a little diminished, to 73%, when the copper salt was left out. Setting up the quaternary centre had been easy, but the rest of the work on this approach proved to be more difficult. There were two recognisable problems, one in each of the branches at the quaternary centre: the phenyl ring was unfunctionalised, ${ }^{15}$ and the carbon chain was one carbon atom too long. However, before we dealt with these, we met another problem: an attempt at acid-catalysed hydrolysis and decarboxylation of the Meldrum's acid group gave the alcohol 12, a compound that had also been an unavoidable and puzzling minor by-product in the preparation of the ester 10. For, no matter how carefully we purified the starting material 9 to free it of adamanatanone, certainly well enough for there to be $<2 \%$ of compound 4 , we always found that the product contained 4 5% of the alcohol 12. It was now clear that this by-product must have been produced in the acidic aq. work-up of the reaction mixture. This is a remarkable reaction, for it implies an $S_{\mathrm{N}} 1$ process with a carbon nucleofugal group, a rare event, although more understandable here with Meldrum's acid as the nucleofuge than with most carbon groups. In more detail, the acidic hydrolysis of the ester $\mathbf{1 0}$ actually gave a mixture of the alcohol 12 and the ether 13, the latter coming from the ethanol present in the chloroform used to extract the product, and the combined yield was high. Fortunately this particular problem responded to a procedure of Oikawa's, in which the decarboxylation is combined with methanolysis under basic conditions, giving the ester 14 in 93% yield. ${ }^{16}$ We were still left with the two remaining problems. ortho-Functionalisation of the phenyl ring was probably going to be easy; thus we were able to add o-fluorophenyllithium to the ester 9 by keeping the temperature at $-50^{\circ} \mathrm{C}$, above which benzyne formation becomes relatively rapid, ${ }^{17}$ and by using boron trifluoridediethyl ether as a Lewis acid catalyst. The yield of the ester 11 was only 31%, but, for reasons that will become apparent, we did not try to optimise this reaction. The methanolysisdecarboxylation reaction also worked in this series, giving the ester 15 (Scheme 2).

$$
\begin{array}{ll}
16 X=\mathrm{H}_{2} 93 \% \\
17 X=059 \% & 14 \mathrm{Ar}=\mathrm{Ph} 93 \% \\
& 15 \mathrm{Ar}=0-\mathrm{FC}_{6} \mathrm{H}_{4} 75 \%
\end{array}
$$

Scheme 2 Reagents and conditions: i, $\mathrm{PhMgBr}, \mathrm{CuBr}$ (cat.); ii, $\mathrm{H}_{3} \mathrm{O}^{+}$; iii, MeOH-pyridine, $\mathrm{Cu}, 100^{\circ} \mathrm{C}$; iv, PPA ; v, SeO_{2}

The contraction of the two-carbon chain to a one-carbon chain was not so easy. Routes based on successive reduction, dehydration, and ozonolysis are undesirable, because they are not compatible with the presence of the vinyl group in the ketone 1 that we would eventually have to work with. We tried many oxidations under basic conditions, hoping to attack the enolate of the ester 14, to no avail. The problem was that the enolate did not form, even under rather forcing conditions, such as refluxing with potassium hydride in tetrahydrofuran (THF) for several hours. To avoid this problem, we tried to oxidise directly the anion of the Meldrum's acid derivative $\mathbf{1 0}$, either in situ, immediately after its formation in the conjugate addition, or by regenerating it from compound $\mathbf{1 0}$. Thus, after bubbling air through the reaction mixture following the conjugate addition, and by using a reductive work-up with hydrogen sulphite, we isolated the alcohol $12(44 \%)$, showing that the $\mathrm{C}-\mathrm{C}$ bond had again cleaved too easily for our purposes, together with a reduction product, dihydro-9 (21%), that must have come from unchanged starting material. The anion formed from the ester 10 was insoluble, it did not react with oxygen, and other oxidising agents were equally ineffective.

To get round this problem, and simultaneously to solve the ortho-functionalisation problem, we carried out a Friedel-Crafts reaction on the ester 14 to give the indanone 16 in 93% yield. We hoped that enolisation would now be easier than it had been with the ester $\mathbf{1 4}$; in the first place the carbonyl group is now a ketone, and furthermore it is constrained in a ring, making enolisation easier still. In the event, the diketone 17 formed easily in 59% yield, but we were unable to make an oxindole from this intermediate, as summarised in Scheme 3.

Scheme 3 Reagents: $\mathrm{i}, \mathrm{NaN}_{3}$; ii, $\mathrm{NaOMe}, \mathrm{Br}_{2}$; iii, MCPBA; iv, MeOH ; $\mathrm{v},(\mathrm{COCl})_{2} ;$ vi, $\mathrm{NH}_{3} ;$ vii, $\mathrm{NH}_{2} \mathrm{OH}$; viii, PPA

Schmidt reaction on the diketone 17 gave two products (18 and 19), but the former did not decarbonylate on heating, as pyruvate derivatives sometimes do, ${ }^{18}$ and the latter did not give the oxindole on treatment with bromine and base, although there was good precedent for it to have done so. ${ }^{19}$ The product in the latter case was the anhydride 20 , which was also the
product from treatment of the diketone 17 with peracid. Although this anhydride did react with ammonia to give an amido acid (22), the amido acid did not give the oxindole on Hofmann reaction. The assignment of regiochemistry to the opening of the anhydride was not entirely unambiguous, and we therefore opened it first with methoxide ion, on the assumption that the product would have the same regiochemistry. We then made the amido ester 21 from this half-acid half-ester. Hofmann reaction on this amide only led back to the imide 19 , with a Thorpe--Ingold effect so encouraging ring formation that the bromine is unable to attack the anionic intermediate before it cyclises. Even if we have the structures drawn for the amido acid and the amido ester the wrong way round, this route does not look promising.

Finally, the only reaction to achieve the loss of a carbon atom, but unfortunately the wrong one, was the Beckmann rearrangement carried out on the oxime 23 of the diketone 17. This oxime was formed by nucleophilic attack with opposite regioselectivity to that which we had observed with the anhydride 20. This might have allowed us to synthesize the lactam 18 in better yield, and so to pursue its chemistry with more conviction, but the product of the Beckmann rearrangement proved to be the isomer 24 of the oxindole, formed by decarbonylation, a retro-Koch-Haaf reaction, from $\mathrm{C}-2$ of the adamantane system.

Our second substrate, the known ${ }^{20} \alpha \beta$-unsaturated nitro compound 25 , avoids the problem of the extra carbon atom, but the problem now was to achieve the conjugate addition of an aryl nucleophile. Although we did occasionally prepare the nitroalkane 27 , in our early efforts, it was usually in negligible yield, never better than 15% ($\mathrm{PhMgBr}, \mathrm{CuBr} \cdot \mathrm{DMS}, \mathrm{TMSCl}$). A curious by-product in a few of these runs, and a major product (19%) in one of them ($\mathrm{PhLi}, \mathrm{THF}$), appeared to be the nitroalkene 26, formally corresponding to Michael addition with unconventional regiochemistry followed by oxidation. However, following Pecunioso and Menicagli, ${ }^{21}$ we found that conjugate addition of triphenylaluminium to this Michael acceptor was much more successful, and gave the nitroalkane 27 in 91% yield. Our original plan at this stage had been to convert the nitroalkane directly into the oxindole in one pot, for they are at the same oxidation level, and a reaction existed that seemed promising. ${ }^{22}$ It is based on Royer's conversion of β-nitrostyrene into 3 -chlorooxindole using acetyl chloride and iron(III) chloride, ${ }^{23}$ and involved first forming the nitronate with sodium hydride, followed by treatment with acetyl chloride and iron(iII) chloride. After a lot of work, we were able to make this reaction work for the conversion of 2-nitroethylbenzene into oxindole itself, but only in 10% yield. Worse still, although we had hoped that a Thorpe Ingold effect might make the adamantane-based reaction better than the unsubstituted model, even our best reaction conditions completely failed to convert the nitroalkane 27 into the oxindole 8 , which we could have detected in trace amounts.

Consideration of some of the intermediates that might be involved in the one-pot procedure ${ }^{24-26}$ led us to a stepwise version that does work. One of the many by-products in our attempts at the one-pot reaction was the nitrile oxide 28. Although nitrile oxides have been strongly implicated as intermediates in the reaction of nitronates with acetyl chloride, ${ }^{24.27}$ this is the first time that one has been isolated. Deliberate dehydration of the nitroalkane 27 , using successively sodium methoxide and acetyl chloride, since phenyl isocyanate and triethylamine ${ }^{28}$ were ineffective, gave the nitrile oxide 28 in 66% yield. Addition of acetic acid to the nitrile oxide gave the O-acetyl hydroxamate, but this too did not cyclise ${ }^{25}$ on treatment with iron(III) chloride, giving perhaps only traces of the oxindole 8 . Hydration of the nitrile oxide gave the hydroxamic acid itself in 56% yield, and methylation of this
compound gave the methyl hydroxamate 29 in 93% yield. When the three steps from the nitroalkane 27 to the methyl hydroxamate 29 were combined, without purification of the intermediates, the overall yield was 69%.

We were now able to connect to Kikugawa's N-methoxyoxindole synthesis, in which methyl N-chlorohydroxamates are cyclised with silver(1) as a Lewis acid catalyst. ${ }^{29}$ In our case, the chlorination of the methyl hydroxamate 29 was slower than Kikugawa's, but the cyclisation to the N-methoxyoxindole 30 was faster, the Thorpe-Ingold effect coming to our aid this time. When carried out with a small excess of t-butyl hypochlorite, the reaction gave some of the chlorinated N-methoxyoxindole 31 , in which the chlorine atom was para to the nitrogen, implying that some chlorination had taken place after cyclisation. This was easily minimised by careful control of the amount of hypochlorite, and the N -methoxyoxindole 30 was formed, upon using zinc acetate as the Lewis acid, in 85% yield. Finally, reduction of the $\mathrm{N}-\mathrm{O}$ bond with sodium amalgam, which had previously been established as a reducing agent for a number of similar substrates, ${ }^{30}$ worked cleanly to give the oxindole $\mathbf{8}$ in quantitative yield (Scheme 4). The overall yield from adamantanone was 47%.

Scheme 4 Reagents: i, $\mathrm{PhLi} ;$ ii, $\mathrm{Ph}_{3} \mathrm{Al}$; iii, NaOMe ; iv, $\mathrm{AcCl} ; \mathrm{v}, \mathrm{H}_{2} \mathrm{SO}_{4}$; vi, $\mathrm{Na}_{2} \mathrm{CO}_{3}$, MeI; vii, $\mathrm{Bu}^{1} \mathrm{OCl}$; viii, $\mathrm{Zn}(\mathrm{OAc})_{2} ;$ ix, $\mathrm{Na} / \mathrm{Hg}$

Before we moved on to the main synthesis itself, there remained the possibility that the stereochemistry of attack on $\mathrm{C}-7$ of the nitroalkene to be derived from the definitive ketone 1 might be affected by the presence of the oxygen substituent on C-3; whether helpfully or adversely we did not know. In applying the Heck reaction to oxindole syntheses, in which this bridging substituent was not present, but the axial vinyl group was, Overman and co-workers ${ }^{10}$ found little selectivity ($1.4: 1$) in favour of attack of the aryl group from the lower surface, and Speckamp and co-workers found surprisingly, that the aryl group attacked only on the upper surface, syn to the vinyl group, to give the wrong oxindole. ${ }^{10}$ We wanted to know whether the oxygen bridge would be helpful in our system, as it might well be, given that it can co-ordinate to the aluminium reagent. Furthermore, it is known that several nucleophiles, including some that are not capable of co-ordination, attack the ketone 32 syn to the bridging oxygen atom. ${ }^{5}$ Accordingly, we prepared the mixture of nitroalkenes 33 from the ketone 32 , and treated it with triphenylaluminium at as low a temperature as we could,
given that the triphenylaluminium-xylene mixture solidifies at $-10^{\circ} \mathrm{C}$. We obtained largely ($90: 1$) the nitroalkane 34 , although only in 35% yield (Scheme 5). The crystals did not prove to be suitable for X-ray structure analysis, but an argument based on combined COSY and difference NOE experiments convinced us that the structure was that which we had hoped for. The stage was now set for us to turn to the synthesis of gelsemine itself.

Scheme 5 Reagents: i, $\mathrm{MeNO}_{2} ;$ ii, $\mathrm{Ph}_{3} \mathrm{Al}$

Experimental

2-(N -Methylanilinomethylene) adamantane 5.- N -Methylaniline ($3.65 \mathrm{~cm}^{3}, 32 \mathrm{mmol}$) was added to a solution of adamantane-2-carbaldehyde ${ }^{12}$ (ca. 5.25 g , ca. 32 mmol) in benzene ($400 \mathrm{~cm}^{3}$) and the mixture was refluxed (Soxhlet, $4 \AA$ sieves) for 3 days. The solvent was evaporated off under reduced pressure, and the residue was distilled (Kugelrohr, $100^{\circ} \mathrm{C} / 0.02$ $\mathrm{mmHg})$ to give the enamine $5(4.99 \mathrm{~g}, c a .62 \%)$ as a yellow oil, $v_{\text {max }}($ film $) / \mathrm{cm}^{-1} 1580(\mathrm{C}=\mathrm{C})$ and $680(\mathrm{Ph}) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 6.50-7.30$ $(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 5.75(1 \mathrm{H}, \mathrm{s},=\mathrm{CHN}), 3.00(3 \mathrm{H}, \mathrm{s}, \mathrm{NMe})$ and $2.39-$ $1.50(14 \mathrm{H}, \mathrm{m})$ (Found: $\mathrm{M}^{+}, 253.1812 . \mathrm{C}_{18} \mathrm{H}_{23} \mathrm{~N}$ requires M , 253.1830).

Tricyclo[3.3.1.1 $1^{3,7}$ decane-2-spiro- $3^{\prime}-2^{\prime}, 3^{\prime}$-dihydro- N -methylindole 6.-A solution of the enamine $5(3.09 \mathrm{~g}, 12.21 \mathrm{mmol})$ in dry diethyl ether ($300 \mathrm{~cm}^{3}$) was purged with nitrogen for 30 min , and irradiated in Pyrex apparatus with a 450 W mercury vapour lamp at $20^{\circ} \mathrm{C}$ for 7 days. The mixture was then extracted with hydrochloric acid ($3 \mathrm{~mol} \mathrm{dm}{ }^{-3} ; 3 \times 100 \mathrm{~cm}^{3}$). The extracts were washed with diethyl ether $\left(100 \mathrm{~cm}^{3}\right)$, basified with solid sodium hydroxide, and extracted with diethyl ether $(3 \times 100$ cm^{3}). The extracts were washed with brine $\left(100 \mathrm{~cm}^{3}\right)$, dried $\left(\mathrm{MgSO}_{4}\right)$, and evaporated under reduced pressure. Distillation of the residue (Kugelrohr, $100^{\circ} \mathrm{C} / 0.02 \mathrm{mmHg}$) gave the indoline $6(1.06 \mathrm{~g}, 34 \%)$ as an oil, $R_{\mathrm{f}}[$ light petroleum-EtOAc (4:1)] 0.71; $v_{\max }($ film $) / \mathrm{cm}^{-1} 1590,1450,1370,1270,1095,960,750$ and 735 ; $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 7.64\left(1 \mathrm{H}, \mathrm{dd}, J 7.6\right.$ and $\left.0.9,7^{\prime}-\mathrm{H}\right), 7.14(1 \mathrm{H}, \mathrm{dt}, J 7.6$ and $\left.0.9,5^{\prime}-\mathrm{H}\right), 6.71\left(1 \mathrm{H}, \mathrm{dt}, J 7.6\right.$ and $\left.1.2,6^{\prime}-\mathrm{H}\right), 6.52(1 \mathrm{H}, \mathrm{dd}$, $J 7.8$ and $\left.0.9,4^{\prime}-\mathrm{H}\right), 3.31\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{~N}\right), 2.76(3 \mathrm{H}, \mathrm{s}, \mathrm{NMe})$, 2.52-2.46 ($2 \mathrm{H}, \mathrm{m}$) and 2.05-1.65 (12 H, m); $\delta_{C}\left(\mathrm{CDCl}_{3}\right)$ 153.30, $137.20,127.39,126.98,117.02,107.55,66.98,50.2139 .26,36.16$, 35.38, 34.97, 33.12, 27.55 and 27.41 (Found: $\mathbf{M}^{+}, 253.1844$. $\mathrm{C}_{18} \mathrm{H}_{23} \mathrm{~N}$ requires $\mathrm{M}, 253.1830$).

Tricyclo $\left[3.3 .1 .1^{3,7}\right]$ decane-2-spiro- $3^{\prime}-2^{\prime}, 3^{\prime}$-dihydroindole- N carbaldehyde 7.-Following the procedure of Henbest and Thomas, ${ }^{31}$ the indole $6(0.96 \mathrm{~g}, 3.80 \mathrm{mmol})$ and manganese dioxide ($22.60 \mathrm{~g}, 256.8 \mathrm{mmol}$) were stirred in chloroform $\left(45 \mathrm{~cm}^{3}\right)$ at $20^{\circ} \mathrm{C}$ for 16 h . The mixture was filtered through Celite, which was then washed with chloroform, the combined filtrate and washings were evaporated under reduced pressure, and the residue was flash chromatographed [light petroleumEtOAc ($4: 1$)] to give the oxindole 8 ($20 \mathrm{mg}, 2 \%$), identical (TLC, NMR and MS) with an authentic sample, ${ }^{3}$ followed by the amide $7(0.43 \mathrm{~g}, 42 \%), R_{\mathrm{f}}$ [light petroleum-EtOAc (4:1)] $0.41 ; v_{\max }(\mathrm{film}) / \mathrm{cm}^{-1} 2900,1665(\mathrm{C}=\mathrm{O}), 1580,1480,1360$ and $750 ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 8.91-7.63(3 \mathrm{H}, \mathrm{s}$, br s , s, d, d, d and d, aromatic CH and NCHO , mixture of two rotameric forms), $7.38-7.02(2 \mathrm{H}, \mathrm{m}), 4.02\left(2 \mathrm{H}, \mathrm{d}, J 1.0, \mathrm{NCH}_{2} \mathrm{R}\right)$ and $2.58-1.60$ $(14 \mathrm{H}, \mathrm{m})$ (Found: $\mathrm{M}^{+}, 267.1625 . \mathrm{C}_{18} \mathrm{Y}_{21} \mathrm{NO}$ requires M ,
267.1623); $m / z 267$ ($24 \%, \mathrm{M}^{+}$), 266 (100) and 237 (26, M CHO).

2,2-Dimethyl-5-(2-phenyltricyclo[3.3.1.1 ${ }^{3.7}$]decan-2-yl)-1,3-dioxane-4,6-dione 10 .-A solution of 2,2-dimethyl-5-(tricyclo[3.3.1.1 ${ }^{3,7}$]decanylidene)-1,3-dioxane-4,6-dione 9^{13} (200 mg, $0.72 \mathrm{mmol})$ in the minimum of diethyl ether $\left(40 \mathrm{~cm}^{3}\right)$ was added dropwise during 18 min to a mixture of phenylmagnesium bromide [$1.5 \mathrm{~cm}^{3}$ of a $1.5 \mathrm{~mol} \mathrm{dm}{ }^{-3}$ solution in diethyl ether, prepared from bromobenzene ($2.63 \mathrm{~cm}^{3}, 25 \mathrm{mmol}$) and magnesium ($0.73 \mathrm{~g}, 30 \mathrm{mmol}$)] and copper(I) bromide (5 mg) in diethyl ether $\left(5 \mathrm{~cm}^{3}\right)$ under nitrogen at $0^{\circ} \mathrm{C}$. The reaction mixture was allowed to warm to room temperature during 20 min and was then heated to $40^{\circ} \mathrm{C}$ for 6 h to complete consumption of the adduct 9 (TLC). The reaction was quenched by the addition of brine (containing 2% conc. sulphuric acid) and extracted with diethyl ether. The extracts were washed with brine and dried $\left(\mathrm{MgSO}_{4}\right)$, the solvent was evaporated off, and the residue was flash chromatographed [hexane- $\mathrm{Et}_{2} \mathrm{O}(7: 1)$] to give the diester 10 ($224 \mathrm{mg}, 87 \%$). A recrystallised sample (from hexane-EtOAc) gave prisms, m.p. $163-164^{\circ} \mathrm{C}$ (Found: $\mathrm{C}, 74.3$; $\mathrm{H}, 7.5 . \mathrm{C}_{22} \mathrm{H}_{26} \mathrm{O}_{4}$ requires $\mathrm{C}, 74.6 ; \mathrm{H}, 7.4 \%$); R_{f} [hexane- $\mathrm{Et}_{2} \mathrm{O}$ (1:1)] $0.47 ; v_{\text {max }}\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 1730(\mathrm{C}=\mathrm{O}) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 7.31-$ $7.14(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 4.27(1 \mathrm{H}, \mathrm{s}, \mathrm{CHCO}), 2.97(2 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{CH} \alpha$ to CPh$), 2.34(2 \mathrm{H}$, br d, $J 13.3,2 \times \mathrm{CH}), 1.99-1.56(10 \mathrm{H}, \mathrm{m}$, adamantyl CH and $\left.\mathrm{CH}_{2}\right), 1.41(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}$ trans to Ph$)$ and 0.57 ($3 \mathrm{H}, \mathrm{s}, \mathrm{Me}$ cis to Ph); $\delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 164.5(\mathrm{CO}), 140.5$ (ipso-C), 128.6 and $127.2(o-, m-\mathrm{C}), 127.0(p-\mathrm{C}), 105.2\left(C \mathrm{Me}_{2}\right), 52.6(\mathrm{C}-2)$, $51.2(\mathrm{CHCO}), 38.3(\mathrm{C}-6), 33.5$ and $33.2(\mathrm{C}-4$ and -9 , and $\mathrm{C}-8$ and $-10), 31.4(\mathrm{C}-1$ and -3$)$, and $30.5,26.9,26.8$ and $26.2(\mathrm{C}-5,-7$ and $\mathrm{CMe} 2_{2}$) (Found: $\mathrm{M}^{+}-\mathrm{C}_{4} \mathrm{H}_{6} \mathrm{O}_{3}, 252.1512 . \mathrm{C}_{18} \mathrm{H}_{20} \mathrm{O}$ requires $m / z 252.1514$); m/z $268\left(2 \%, \mathrm{M}-\mathrm{C}_{4} \mathrm{H}_{6} \mathrm{O}_{2}\right.$), 252 ($1, \mathrm{M}-$ $\left.\mathrm{C}_{4} \mathrm{H}_{6} \mathrm{O}_{3}\right)$ and $211\left(100, \mathrm{C}_{16} \mathrm{H}_{19}\right)$. Chromatography also gave the alcohol 12 ($7 \mathrm{mg}, 4 \%$), identical (TLC, ${ }^{1} \mathrm{H}$ NMR) with the sample prepared below.

Attempted Phenyl-addition to the Ester 9 and in situ Oxidation of the Intermediate Enolate.-The ester $9(0.3 \mathrm{~g}, 1.1 \mathrm{mmol})$ was treated with phenyllithium (1.3 mmol) in diethyl ether at $0^{\circ} \mathrm{C}$ until the adduct was consumed (TLC). The reaction mixture was flushed with oxygen and allowed to warm to room temperature overnight, then quenched with aq. sodium sulphite, and worked up to give a solid. Separation by dry-column flash chromatography ${ }^{32}$ [hexane- $\left.\mathrm{Et}_{2} \mathrm{O}(10: 1)\right]$ gave the alcohol 12 $(107 \mathrm{mg}, 44 \%)$ as prisms, m.p. $79.5-80.5^{\circ} \mathrm{C}$ [from light petroleum (b.p. $40-60^{\circ} \mathrm{C}$)] (lit., ${ }^{33} 80.5-81^{\circ} \mathrm{C}$); R_{f} [hexane$\left.\mathrm{Et}_{2} \mathrm{O}(4: 1)\right] 0.30, v_{\max }\left(\mathrm{CCl}_{4}\right) / \mathrm{cm}^{-1} 3610(\mathrm{OH}) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 7.54$ $(2 \mathrm{H}, \mathrm{d}, J 8, o-\mathrm{Ph}), 7.37(2 \mathrm{H}, \mathrm{t}, J 7.4, m-\mathrm{Ph}), 7.30-7.24(1 \mathrm{H}, \mathrm{m}$, $p-\mathrm{Ph}), 2.56(2 \mathrm{H}$, br s, $2 \times \mathrm{CH} \alpha$ to CPh$), 2.41(2 \mathrm{H}, \mathrm{br} \mathrm{d}, J 12$, $2 \times \mathrm{CH}), 1.91(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{CH}), 1.72\left(9 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{CH}\right.$ and $\left.\mathrm{CH}_{2}\right)$ and $1.60\left(1 \mathrm{H}\right.$, br s, OH , exchanges in $\left.\mathrm{D}_{2} \mathrm{O}\right) ; m / z 228(100 \%$, $\left.\mathrm{M}^{+}\right), 210\left(100, \mathrm{M}-\mathrm{H}_{2} \mathrm{O}\right)$ and $133\left(20, \mathrm{C}_{10} \mathrm{H}_{13}\right)$; and 2,2-dimethyl-5-(tricyclo[3.3.1.1 ${ }^{3.7}$]decan-2-yl)-1,3-dioxane-4,6dione ${ }^{34}\left(64 \mathrm{mg}, 21 \%\right.$) as needles, m.p. $150.5-152^{\circ} \mathrm{C}$ (from hexane); R_{f} [hexane- $\left.\mathrm{Et}_{2} \mathrm{O}(4: 1)\right] 0.17 ; v_{\max }\left(\mathrm{CCl}_{4}\right) / \mathrm{cm}^{-1} 1760$ $(\mathrm{C}=\mathrm{O}) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 3.75(1 \mathrm{H}, \mathrm{d}, J 11.1, \mathrm{CHCO}), 2.23(1 \mathrm{H}, \mathrm{d}$, $J 11.1, \mathrm{CHCHCO}), 2.08-1.57\left(14 \mathrm{H}, \mathrm{m}, \mathrm{CH}\right.$ and $\left.\mathrm{CH}_{2}\right), 1.78$ ($3 \mathrm{H}, \mathrm{s}, \mathrm{Me}$) and $1.73(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}) ; m / z 278\left(4 \%, \mathrm{M}^{+}\right), 263$ (4, $\mathbf{M}-\mathrm{Me}), 220\left(100, \quad \mathbf{M}-\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}\right)$, and 192 (100, $\mathrm{M}-\mathrm{C}_{4} \mathrm{H}_{6} \mathrm{O}_{2}$).

Attempted Hydrolysis and Decarboxylation of the Ester 10.A suspension of the ester $10(0.2 \mathrm{~g}, 0.56 \mathrm{mmol})$ in hydrochloric acid ($10 \mathrm{~cm}^{3} ; 6 \mathrm{~mol} \mathrm{dm}{ }^{-3}$) was boiled for 16 h . The cooled mixture was then extracted with chloroform $\left(3 \times 10 \mathrm{~cm}^{3}\right)$. The extracts were dried $\left(\mathrm{MgSO}_{4}\right)$, and evaporated under reduced pressure. Chromatography [TLC; light petroleumEtOAc (4:1)] gave the alcohol $12(0.08 \mathrm{~g}, 63 \%), R_{\mathrm{f}}$ [light
petroleum-EtOAc (4:1)] 0.53, identical (TLC, IR, ${ }^{1} \mathrm{H}$ NMR) with the sample described above; and 2-ethoxy-2-phenyladamantane $13(0.04 \mathrm{~g}, 28 \%), R_{\mathrm{f}}$ [light petroleum-EtOAc (4:1)] $0.75 ; v_{\text {max }}($ film $) / \mathrm{cm}^{-1} 2900,1440,1065,760$ and $695 ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right)$ 7.49-7.21 ($5 \mathrm{H}, \mathrm{m}$), $2.92\left(2 \mathrm{H}, \mathrm{q}, J 6.9, \mathrm{OCH}_{2} \mathrm{Me}\right), 2.62(2 \mathrm{H}$, br s), $2.34(2 \mathrm{H}$, br d), $1.88(1 \mathrm{H}$, br s), $1.58-1.74(9 \mathrm{H}, \mathrm{m})$ and $0.96\left(3 \mathrm{H}, \mathrm{t}, J 7.0 \mathrm{OCH}_{2} \mathrm{Me}\right)$ (Found: $\mathrm{M}^{+}, 256.1817 . \mathrm{C}_{18} \mathrm{H}_{24} \mathrm{O}$ requires $\mathrm{M}, 256.1827$).

Methyl (2-Phenyltricyclo[3.3.1.1 ${ }^{3,7}$]decan-2-yl)acetate 14.Following the method of Oikawa et al.. ${ }^{16}$ the ester $10(100 \mathrm{mg}$, 0.28 mmol) and copper powder (8 mg) were heated in pyridine $\left(4 \mathrm{~cm}^{3}\right)$-methanol $\left(1 \mathrm{~cm}^{3}\right)$ at $100^{\circ} \mathrm{C}$ for 9 h . The solvent was evaporated off, the residue taken up in dichloromethane, the copper was filtered off, and the solvent was evaporated off to give the ester 14 ($75 \mathrm{mg}, 93 \%$). A recrystallised sample gave needles, m.p. $126.5-127.5^{\circ} \mathrm{C}$ (from hexane) (Found: C, $80.3 ; \mathrm{H}$, 8.7. $\mathrm{C}_{19} \mathrm{H}_{24} \mathrm{O}_{2}$ requires $\mathrm{C}, 80.2 ; \mathrm{H}, 8.5 \%$); R_{f} [hexane- $\mathrm{Et}_{2} \mathrm{O}$ (2:1)] $0.49 ; v_{\text {max }}\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 1730(\mathrm{C}=\mathrm{O}) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 7.31-$ $7.27(4 \mathrm{H}, \mathrm{m}, 4 \times \mathrm{ArH}), 7.19-7.14(1 \mathrm{H}, \mathrm{m}, \operatorname{ArH}), 3.26(3 \mathrm{H}, \mathrm{s}$, OMe), $2.70\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{CO}\right), 2.61(2 \mathrm{H}$, br s, $2 \times \mathrm{CH} \propto$ to CPh$)$, $2.23\left(2 \mathrm{H}, \mathrm{br} \mathrm{d}, J 11.7,2 \times \mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}\right), 1.96-1.71(8 \mathrm{H}, \mathrm{m}, \mathrm{CH}$ and $\left.\mathrm{CH}_{2}\right)$ and $1.57\left(2 \mathrm{H}\right.$, br d, $\left.J 11.7,2 \times \mathrm{CH}_{\mathrm{A}} H_{\mathrm{B}}\right) ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 172.1$ (CO), 145.1 (ipso-C), 128.0 and 126.3 (o-, $m-\mathrm{C}$), 125.6 (p-C), 50.8 (OMe), $46.0(\mathrm{C}-2), 45.7\left(\mathrm{CH}_{2} \mathrm{CO}\right), 38.6(\mathrm{C}-6), 33.5$ and $32.9(\mathrm{C}-4$ and -9 , and $\mathrm{C}-8$ and -10), $32.7(\mathrm{C}-1$ and -3$)$ and 27.8 and 27.1 (C-5 and -7) (Found: $\mathrm{M}^{+}, 284.1775 . \mathrm{C}_{19} \mathrm{H}_{24} \mathrm{O}_{2}$ requires M , 284.1776); miz $284\left(1 \%, \mathrm{M}^{+}\right), 269(1, \mathrm{M}-\mathrm{Me}), 224(1, \mathrm{M}-$ $\left.\mathrm{HCO}_{2} \mathrm{Me}\right)$ and $211\left(100, \mathrm{C}_{16} \mathrm{H}_{19}\right)$.

5-(2-o-Fluorophenyltricyclo[3.3.1.1 ${ }^{3,7}$]decan-2-yl)-2,2-di-methyl-1,3-dioxane-4,5-dione 11.-A solution of o-bromofluorobenzene ($317 \mathrm{mg}, 1.81 \mathrm{mmol}$) in diethyl ether ($2 \mathrm{~cm}^{3}$) was added dropwise during 6 min to a solution of butyllithium $\left(1.13 \mathrm{~cm}^{3}\right.$ of a $1.6 \mathrm{~mol} \mathrm{dm}^{-3}$ solution in hexane, 1.81 mmol) in diethyl ether ($20 \mathrm{~cm}^{3}$) under nitrogen, while the internal temperature was kept below $-65^{\circ} \mathrm{C}$, and the mixture was then kept for 50 min at $<-65^{\circ} \mathrm{C}$. The adduct $9(100 \mathrm{mg}, 0.36 \mathrm{mmol})$ and a solution of boron trifluoride-diethyl ether ($0.09 \mathrm{~cm}^{3}, 0.72 \mathrm{mmol}$, freshly distilled) in diethyl ether ($20 \mathrm{~cm}^{3}$) were added dropwise during 15 min , while the internal temperature was kept below $-65^{\circ} \mathrm{C}$. The mixture was brought to $-45^{\circ} \mathrm{C}$ (solid $\mathrm{CO}_{2}-\mathrm{MeCN}$) and stirred for 2 h , then quenched with aq. ammonium chloride and allowed to warm to room temperature. The mixture was extracted with diethyl ether, the extracts were washed with brine and dried $\left(\mathrm{MgSO}_{4}\right)$, and the solvent was evaporated off. The residue was chromatographed [TLC, hexane- $\mathrm{Et}_{2} \mathrm{O}(1: 1)$] to give the ester $11(42 \mathrm{mg}, 31 \%)$ as prisms, m.p. $164-168^{\circ} \mathrm{C}$ (from hexane) (Found: $\mathrm{C}, 71.0 ; \mathrm{H}, 6.65 . \mathrm{C}_{22} \mathrm{H}_{25} \mathrm{FO}_{4}$ requires $\mathrm{C}, 71.0$; $\mathrm{H}, 6.8 \%) ; R_{\mathrm{f}}\left[\right.$ hexane $\left.-\mathrm{Et}_{2} \mathrm{O}(1: 1)\right] 0.38 ; v_{\text {max }}\left(\mathrm{CCl}_{4}\right) / \mathrm{cm}^{-1} 1775$ $(\mathrm{C}=\mathrm{O})$ and $1735(\mathrm{C}=\mathrm{O}) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right)$ 7.24-6.96 (4 H, m, $4 \times \mathrm{ArH}), 4.29(1 \mathrm{H}, \mathrm{s}, \mathrm{CHCO}), 3.22(1 \mathrm{H}, \mathrm{br}$ s, $\mathrm{CH} \propto$ to CPh$)$, $2.95(1 \mathrm{H}$, br s, $\mathrm{CH} \alpha$ to CPh$), 2.42-2.34(2 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{CH})$, 1.98-1.65 ($10 \mathrm{H}, \mathrm{m}, \mathrm{CH}$ and CH_{2}) , $1.49(3 \mathrm{H}, \mathrm{s}$, Me trans to Ar) and $0.79(3 \mathrm{H}, \mathrm{s}$, Me cis to Ar$)$ (Found: $\mathrm{M}^{+}-\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}$, 314.1317. $\mathrm{C}_{19} \mathrm{H}_{19} \mathrm{FO}_{3}$ requires $\left.m / z, 314.1318\right) ; m / z 314(1 \%$, $\left.\mathrm{M}-\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}\right), 286\left(13, \mathrm{M}-\mathrm{C}_{4} \mathrm{H}_{6} \mathrm{O}_{2}\right)$ and $229\left(100, \mathrm{C}_{16} \mathrm{H}_{18} \mathrm{~F}\right)$.

Methyl (2-o-Fluorophenyltricyclo[3.3.1.1 $\left.{ }^{3,7}\right]$ decan-2-yl)acetate 15.-The ester 11 ($42 \mathrm{mg}, 0.11 \mathrm{mmol}$) was heated with copper in pyridine-methanol, as described for the preparation of the ester 14 , to give the ester $15(25 \mathrm{mg}, 75 \%)$ as an oil, R_{f} [hexane $-\mathrm{Et}_{2} \mathrm{O} \quad(2: 1)$] $0.46 ; \quad v_{\text {max }}\left(\mathrm{CCl}_{4}\right) / \mathrm{cm}^{-1} 1730 \quad(\mathrm{C}=\mathrm{O})$; $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 7.26(1 \mathrm{H}, \mathrm{dt}, J 1.8$ and $8.1, \mathrm{ArH}), 7.21-7.12(1 \mathrm{H}, \mathrm{m}$, ArH), $7.08-6.92(2 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 3.28(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.03(1 \mathrm{H}, \mathrm{d}, J$ 13.2, $\left.\mathrm{CH}_{\mathrm{A}} \mathrm{C} H_{\mathrm{B}} \mathrm{CO}\right), 2.82(1 \mathrm{H}$, br s, $\mathrm{CH} \alpha$ to CAr), $2.71(1 \mathrm{H}, \mathrm{d}, J$ 13.2, $\left.\mathrm{CH}_{\mathrm{A}} \mathrm{CH}_{\mathrm{B}} \mathrm{CO}\right), 2.67(1 \mathrm{H}$, br s, $\mathrm{CH} \propto$ to CAr), $2.34-2.27(1 \mathrm{H}$, $\mathrm{m}, \mathrm{CH}), 2.17-2.04\left(2 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{CH}\right.$ or $\left.\mathrm{CH}_{2}\right)$ and $1.95-1.57(9 \mathrm{H}$,
m, CH and CH_{2}) (Found: $\mathrm{M}^{+}, 302.1672 . \mathrm{C}_{19} \mathrm{H}_{23} \mathrm{FO}_{2}$ requires M, 302.1682); $m / z 302\left(3 \%, \mathbf{M}^{+}\right), 287(1, \mathrm{M}-\mathrm{Me})$ and $229(100$, $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{~F}$).

Attempted Deuteriation of the Ester 14.-A solution of the ester 14 ($200 \mathrm{mg}, 0.70 \mathrm{mmol}$) in THF ($5 \mathrm{~cm}^{3}$) was added slowly to a suspension of potassium hydride (282 mg of a 20% dispersion in oil; 1.4 mmol , washed with THF) in THF ($3 \mathrm{~cm}^{3}$) under nitrogen, and the mixture was refluxed for 4 h . Deuterium oxide $\left(0.4 \mathrm{~cm}^{3}\right)$ was added slowly to the mixture at $0^{\circ} \mathrm{C}$ and the mixture was extracted with diethyl ether. The extracts were washed with brine, dried $\left(\mathrm{MgSO}_{4}\right)$, and the solvent was evaporated off to give recovered ester ($168 \mathrm{mg}, 84 \%$) with no deuterium incorporation (${ }^{1} \mathrm{H}$ NMR).

Tricyclo $\left[3.3 .1 .1^{3,7}\right]$ decane-2-spiro- 1^{\prime}-indan- 3^{\prime}-one 16.-By adaptation of the method of Koo, ${ }^{35}$ the methyl ester $14(2.03 \mathrm{~g}$, $7.15 \mathrm{mmol})$ was heated in polyphosphoric acid (PPA) $\left(30 \mathrm{~cm}^{3}\right)$ at $100^{\circ} \mathrm{C}$, and occasionally stirred. When all the solid had dissolved (5 h), the hot mixture was poured onto crushed ice $(500 \mathrm{~g})$ and extracted with chloroform $\left(5 \times 50 \mathrm{~cm}^{3}\right)$. The extracts were washed with brine $\left(100 \mathrm{~cm}^{3}\right)$, dried $\left(\mathrm{MgSO}_{4}\right)$, and evaporated under reduced pressure, to give the ketone 16 $(1.68 \mathrm{~g}, 93 \%)$. A sample purified by TLC [light petroleumEtOAc (9:1)] had R_{f} [light petroleum-EtOAc (9:1)] 0.40; $v_{\text {max }}($ film $) / \mathrm{cm}^{1} 2880,1695(\mathrm{C}=\mathrm{O}), 1590,1450,1310,1080$ and $845 ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 8.09\left(1 \mathrm{H}, \mathrm{d}, J 8.0,4^{\prime}-\mathrm{H}\right), 7.75(1 \mathrm{H}, \mathrm{m}), 7.57$ ($1 \mathrm{H}, \mathrm{m}$), $7.38(1 \mathrm{H}, \mathrm{m}), 2.83\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{CO}\right), 2.58(2 \mathrm{H}$, br d) and 2.09-1.69 $(12 \mathrm{H}, \mathrm{m}) ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 205.98(\mathrm{C}=\mathrm{O}), 161.11(2 \mathrm{C})$, 136.80 and $133.60(4 \times \mathrm{CH}), 129.26,127.30,123.58,51.40$ $\left(\mathrm{CH}_{2} \mathrm{CO}\right), 49.31(\mathrm{C}-2), 39.51\left(5 \times \mathrm{CH}_{2}\right), 37.21$ (two signals), 36.08 (two signals) and 32.79 (two signals) $(4 \times \mathrm{CH}), 27.12$ and 26.76 (Found: M^{+}, 252.1519. $\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{O}$ requires M , 252.1514); oxime (61%) needles, m.p. $188-191^{\circ} \mathrm{C}$ (from aq. $\mathrm{EtOH}) ; R_{\mathrm{f}}\left[\mathrm{CHCl}_{3}-\mathrm{MeOH}(9: 1)\right] 0.50 ; v_{\text {max }}($ film $) / \mathrm{cm}^{1} 3560$, 3350,2880 and $1580 ; \delta_{H}\left(\mathrm{CDCl}_{3}\right) 7.93\left(1 \mathrm{H}, \mathrm{d}, J 7.7,4^{\prime}-\mathrm{H}\right), 7.72$ $(1 \mathrm{H}, \mathrm{dd}, J 7.3$ and 0.9$), 7.25-7.40(2 \mathrm{H}, \mathrm{m}), 3.08(2 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{CH}_{2} \mathrm{C}=\mathrm{N}\right), 2.62-2.57(2 \mathrm{H}$, br d) and $2.19-1.67(12 \mathrm{H}, \mathrm{m})$ (Found: $\mathrm{M}^{+}, 267.1619 . \mathrm{C}_{18} \mathrm{H}_{21} \mathrm{NO}$ requires $\mathrm{M}, 267.1623$).

Tricyclo[3.3.1.1 $1^{3,7}$]decane-2-spiro- 1^{\prime}-indan- $2^{\prime}, 3^{\prime}$-dione 17.The indanone $16(0.52 \mathrm{~g}, 2.06 \mathrm{mmol})$ and selenium dioxide $(0.57 \mathrm{~g}, 5.15 \mathrm{mmol})$ were stirred in acetic anhydride $\left(30 \mathrm{~cm}^{3}\right)$ at $90^{\circ} \mathrm{C}$ for 12 h . The mixture was then evaporated under reduced pressure, and the residue was partitioned between the diethyl ether ($100 \mathrm{~cm}^{3}$) and aq. sodium hydroxide ($40 \mathrm{~cm}^{3}$; $2 \mathrm{~mol} \mathrm{dm}{ }^{-3}$). The ether layer was washed with brine $\left(40 \mathrm{~cm}^{3}\right)$, dried $\left(\mathbf{M g S O}_{4}\right)$, and evaporated under reduced pressure. The residue was then filtered through silica gel, the filter was washed with dichloromethane, and the combined filtrate and washings were evaporated under reduced pressure to give the α diketone $17(0.22 \mathrm{~g}, 40.1 \%)$ as red needles, m.p. $139-143^{\circ} \mathrm{C}$ (from hexane); R_{f} [light petroleum-EtOAc (9:1)] 0.40; $v_{\text {max }}(\mathrm{Nujol}) / \mathrm{cm}^{-1} 2895,1715(\mathrm{C}=\mathrm{O}), 1590$ and $1185 ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right)$ $8.21\left(1 \mathrm{H}, \mathrm{d}, J 8.2,4^{\prime}-\mathrm{H}\right), 7.94(1 \mathrm{H}, \mathrm{dd}, J 7.6$ and 1.3$), 7.79-7.72$ $(1 \mathrm{H}, \mathrm{m}), 7.50(1 \mathrm{H}, \mathrm{t}), 2.75(2 \mathrm{H}, 2 \mathrm{~d}), 2.56(2 \mathrm{H}, 2 \mathrm{~d})$ and 2.14 $1.60(10 \mathrm{H}, \mathrm{m})$ (Found: $\mathrm{M}^{+}, 266.1319 . \mathrm{C}_{18} \mathrm{H}_{18} \mathrm{O}_{2}$ requires M , 266.1307); $m / z 266\left(5 \%, \mathrm{M}^{+}\right)$and $238(100, \mathrm{M}-\mathrm{CO})$.

Schmidt Reaction of the x-Diketone 17.-Sodium azide $(0.37 \mathrm{~g}, 5.65 \mathrm{mmol})$ was added in small portions during 1 h to a stirred solution of the diketone $17(0.93 \mathrm{~g}, 3.50 \mathrm{mmol})$ in a mixture of trichloroacetic acid (9.3 g) and sulphuruic acid (98%; 1.02 g) at $60^{\circ} \mathrm{C}$. After a further 24 h , the mixture was poured onto ice $(100 \mathrm{~g})$ and extracted with dichloromethane $(3 \times 40$ cm^{3}). The extracts were dried $\left(\mathrm{MgSO}_{4}\right)$, then evaporated under reduced pressure, and the residue was filtered through silica gel, and the filter was worked with dichloromethane-methanol (1:1 v / v). The combined filtrate and washings were evaporated
under reduced pressure and the residue was distilled (Kugelrohr, $200^{\circ} \mathrm{C} / 0.01 \mathrm{mmHg}$). The distillate was dry-column flash chromatographed $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ to give the anhydride 20 ($114 \mathrm{mg}, 12 \%$), identical (TLC, NMR, IR and MS) with the sample described below; 1,2,3,4-tetrahydro-1,3-dioxoisoquindine-4-spiro-2'-tricyclo[3.3.1.1 $1^{3.7}$]decane 19 (0.31 $\mathrm{g}, 32 \%), R_{\mathrm{f}}\left[\mathrm{CHCl}_{3}-\mathrm{MeOH}(19: 1)\right] 0.35 ; v_{\max }\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}\right) / \mathrm{cm}^{-1}$ $3340(\mathrm{NH}), 2880,2830,1710$ (C=O), 1688, 1330, 1185, 1070 and $890 ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 8.04(1 \mathrm{H}, \mathrm{dd}, J 7.5$ and $1.5,8-\mathrm{H}), 7.72(1 \mathrm{H}, \mathrm{d}, J$ $7.8), 7.51(2 \mathrm{H}, \mathrm{dt}$ and br s, $J .5$ and $1.5, \mathrm{NH}$ and ArH$), 7.38(1 \mathrm{H}$, $\mathrm{dt}, J 7.5$ and 1.0$)$ and $2.57-1.58(14 \mathrm{H}, \mathrm{m}) ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 178.30(3$ C), 166.09, 144.30 and $131.70(2 \times \mathrm{CH}), 129.41,128.47$ (C), $127.67(2 \times \mathrm{CH}), 127.05,55.24(\mathrm{C}), 37.70\left(4 \times \mathrm{CH}_{2}\right), 34.95$, 33.76, 29.69 and $27.15(2 \times \mathrm{CH})$ and 27.10 (Found: M^{+}, 281.1403. $\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{NO}_{2}$ requires $\mathrm{M}, 281.1416$.

Further elution $\left[\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}\right.$ (19:1)] gave 1,2,3,4-tetra-hydro-2,3-dioxoquinoline-4-spiro- 2^{\prime}-tricyclo $\left[3.3 .1 .1^{3,7}\right]$ decane
18 ($142 \mathrm{mg}, 14 \%$) as a powder, m.p. $>200^{\circ} \mathrm{C}$ (decomp.) (from hexane-EtOAc); $R_{\mathrm{f}}\left[\mathrm{CHCl}_{3}-\mathrm{MeOH}\right.$ (19:1)] 0.32 ; $v_{\max }\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) / \mathrm{cm}^{-1} 3430,3200,2895,2850,1720(\mathrm{C}=\mathrm{O}), 1675$ $(\mathrm{C}=\mathrm{O}), 1350,1090$ and $1035 ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 7.91-7.84(2 \mathrm{H}, \mathrm{m})$, 7.60-7.42 ($3 \mathrm{H}, \mathrm{m}$, including NH), $2.53(2 \mathrm{H}, \mathrm{d}, J 13$), 2.2-2.0 $(4 \mathrm{H}, \mathrm{m}), 1.86(2 \mathrm{H}, \mathrm{d}, J 13), 1.84(4 \mathrm{H}, \mathrm{br}$ s) and $1.74(2 \mathrm{H}, \mathrm{br}$ s) (Found: $\mathrm{M}^{+}-\mathrm{CO}, 253.1446 . \mathrm{C}_{17} \mathrm{H}_{19} \mathrm{NO}$ requires m / z, 253.1467).

3,4-Dihydro-1,3-dioxo-1 $\mathrm{H}-2$-oxanaphthalene-4-spiro-2'-tricyclo[3.3.1.1 ${ }^{3.7}$] decane $\mathbf{2 0}$.-The α-diketone $17(1.27 \mathrm{~g}, 4.77$ $\mathrm{mmol})$ and m-chloroperoxybenzoic acid (MCPBA) $(85 \% ; 1.07$ g, 6.20 mmol) were stirred in chloroform $\left(50 \mathrm{~cm}^{3}\right)$ at $20^{\circ} \mathrm{C}$ for 4 days, the mixture was washed successively with aq. sodium hydrogen sulphite ($30 \mathrm{~cm}^{3}$) and brine ($30 \mathrm{~cm}^{3}$) and dried (MgSO_{4}), the solvent was partly evaporated off under reduced pressure, and the residue was filtered through silica gel, and the filter washed with dichloromethane ($200 \mathrm{~cm}^{3}$). The combined filtrate and washings were evaporated under reduced pressure to give the anhydride $20(0.86 \mathrm{~g}, 64 \%)$ as needles, m.p. ${ }^{154}$ $155^{\circ} \mathrm{C}$ (from hexane); $R_{\mathrm{f}}\left[\mathrm{CHCl}_{3}-\mathrm{MeOH}\right.$ (19:1)] 0.65 ; $v_{\max }\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) / \mathrm{cm}^{-1} 2900,2840,1795(\mathrm{C}=\mathrm{O}), 1745(\mathrm{C}=\mathrm{O}), 1590$, 1000,965 and $945 ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 7.98(1 \mathrm{H}, \mathrm{d}, 8-\mathrm{H}), 7.74(1 \mathrm{H}, \mathrm{d})$, $7.61(1 \mathrm{H}, \mathrm{dt}), 7.44(1 \mathrm{H}, \mathrm{dt})$ and 2.50-1.73 (14 H, m) (Found: $\mathrm{M}^{+}, 282.1284 . \mathrm{C}_{18} \mathrm{H}_{18} \mathrm{O}_{3}$ requires $\mathrm{M}, 282.1256$); $m / z 282(0.6 \%$, M^{+}), $254(1.5, \mathrm{M}-\mathrm{CO})$ and $238\left(100, \mathrm{M}-\mathrm{CO}_{2}\right)$.

Methyl 2-(2'-Carbamoyltricyclo[3.3.1.1 $1^{3,7}$]decan- $\left.2^{\prime}-y l\right)$ benzoate 21.-Sodium methoxide ($5 \mathrm{~cm}^{3}$ of a $1 \mathrm{~mol} \mathrm{dm}^{-3}$ solution in methanol) and the anhydride ($80 \mathrm{mg}, 0.28 \mathrm{mmol}$) were stirred in methanol $\left(10 \mathrm{~cm}^{3}\right)$ at $20^{\circ} \mathrm{C}$ for 4 h , the mixture was evaporated under reduced pressure, and the residue was suspended in hydrochloric acid ($3 \mathrm{~mol} \mathrm{dm}{ }^{-3} ; 20 \mathrm{~cm}^{3}$) and extracted with diethyl ether ($3 \times 20 \mathrm{~cm}^{3}$). The extracts were washed with brine ($20 \mathrm{~cm}^{3}$), dried $\left(\mathrm{MeSO}_{4}\right)$, and evaporated under reduced pressure to give the half-acid ester (85 mg), which was stirred with oxalyl dichloride $\left(4 \mathrm{~cm}^{3}\right)$ in dichloromethane $\left(20 \mathrm{~cm}^{3}\right)$ at $20^{\circ} \mathrm{C}$ for 2 h . The solvents were evaporated off under reduced pressure, and the residue was dissolved in diethyl ether ($20 \mathrm{~cm}^{3}$) and purged with ammonia at $20^{\circ} \mathrm{C}$ for 2 h . The mixture was filtered through silica gel, the filter was washed with dichloromethane ($50 \mathrm{~cm}^{3}$), and the filtrate and washings were evaporated under reduced pressure to give the amido ester 21 ($70 \mathrm{mg}, 80 \%$), R_{f} [light petroleum-EtOAc (4:1)] 0.21; $v_{\text {max }}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) / \mathrm{cm}^{-1} 3470,3250,2900,2850,1700\left(\mathrm{ArCO}_{2} \mathrm{Me}\right.$ and amide I), 1670 (amide II), 1595, 1095, 1070, 955 and 900 ; $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right)$ 7.74-7.21($\left.4 \mathrm{H}, \mathrm{m}\right), 5.27\left(2 \mathrm{H}\right.$, br s, $\left.\mathrm{NH}_{2}\right), 3.93$ ($3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}$) and 3.08-1.18 ($14 \mathrm{H}, \mathrm{m}$) (Found: M^{+}, 313.1692. $\mathrm{C}_{19} \mathrm{H}_{23} \mathrm{NO}_{3}$ requires $\mathrm{M}, 313.1678$); $m / z 313\left(1.5 \%, \mathrm{M}^{+}\right)$, 298 ($70, \mathrm{M}-\mathrm{Me}$), 281 ($90, \mathrm{M}-\mathrm{MeOH}$) and 238 ($100, \mathrm{M}-$ $\mathrm{CO}_{2} \mathrm{Me}-\mathrm{NH}_{2}$).

2-(2'-Carbamoylphenyl)tricyclo[3.3.1.1 $\left.1^{3,7}\right]$ decane-2-
carboxylic Acid 22.-Ammonia was bubbled through a stirred solution of the anhydride $20(0.80 \mathrm{~g}, 2.80 \mathrm{mmol})$ in THF (50 cm^{3}) at $0^{\circ} \mathrm{C}$ for 1 h , and the solution was then refluxed for 1 h . The solvent was evaporated off under reduced pressure and the residue was triturated successively with hydrochloric acid (50 $\mathrm{cm}^{3} ; 3 \mathrm{~mol} \mathrm{dm}{ }^{-3}$) and water ($50 \mathrm{~cm}^{3}$). The residue was dried ($\mathrm{P}_{2} \mathrm{O}_{5}$) to give the amido acid $22(0.61 \mathrm{~g}, 73 \%$) as plates, m.p. $185-187^{\circ} \mathrm{C}$ (from EtOAc); $v_{\text {max }}$ (Nujol)/ cm^{-1} 3350, 3200, 2905, 2840, 2600, 1740 (sat. $\mathrm{CO}_{2} \mathrm{H}$), 1700 (amide I), 1650 (amide II), $1570,1450,1370$ and $1230 ; \delta_{\mathrm{H}}\left[\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right] 7.56-7.23(6 \mathrm{H}, \mathrm{m})$, $3.34(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH}$ or OH$), 3.00(2 \mathrm{H}, \mathrm{br} \mathrm{s}), 2.23(1 \mathrm{H}, \mathrm{br} \mathrm{d})$ and 1.90-1.39 ($11 \mathrm{H}, \mathrm{m}$) (Found: M^{+}, 299.1534. $\mathrm{C}_{18} \mathrm{H}_{21} \mathrm{NO}_{3}$ requires M, 299.1521); $m / z 299\left(0.2 \%, \mathrm{M}^{+}\right), 281\left(6, \mathrm{M}-\mathrm{H}_{2} \mathrm{O}\right)$, 256 ($100, \mathrm{M}-\mathrm{CONH}$) and $238\left(100, \mathrm{M}-\mathrm{CO}_{2} \mathrm{H}-\mathrm{H}_{2} \mathrm{O}\right)$. Hofmann reaction ${ }^{36}$ and pyrolysis ($250^{\circ} \mathrm{C} / 0.1 \mathrm{mmHg}$) gave none of the oxindole.

Attempted Hofmann Reaction on the Amido Ester 21.Bromine was added to the amido ester ($67 \mathrm{mg}, 0.21 \mathrm{mmol}$) in methanolic sodium methoxide ($5 \mathrm{~cm}^{3} ; 1 \mathrm{~mol} \mathrm{dm}^{-3}$) until the colour of bromine just peristed, and the mixture was kept for 10 min . Aq. sodium hydroxide $\left(3 \mathrm{~cm}^{3} ; 2 \mathrm{~mol} \mathrm{dm}{ }^{-3}\right)$ was then added and the mixture was refluxed for 3 days. The solution was neutralised (Universal indicator paper) with hydrochloric acid ($3 \mathrm{~mol} \mathrm{dm}^{-3}$), and evaporated under reduced pressure. The resulting salts were heated ($250^{\circ} \mathrm{C} / 0.05 \mathrm{mmHg}$) for 1 h , in order to dehydrate any amino acids formed. The residue was dissolved in water $\left(50 \mathrm{~cm}^{3}\right)$ and extracted with diethyl ether $\left(3 \times 25 \mathrm{~cm}^{3}\right)$, and the extracts were washed with brine ($30 \mathrm{~cm}^{3}$), dried $\left(\mathrm{MgSO}_{4}\right)$, and evaporated under reduced pressure. Chromatography [TLC; light petroleum-EtOAc (7:3)] gave the isoquinolinedione 19 ($8 \mathrm{mg}, 14 \%$), identical (TLC, NMR, IR and MS) with the compound described above. No oxindole was detected.

Attempted Hofmann Reaction on the Imide 19.-A similar reaction carried out on the imide 19 gave the anhydride 20 (70%), and under the conditions of Jönsson and Moses, ${ }^{19}$ no reaction took place.

Tricyclo [3.3.1.1 $1^{3,7}$]decane-2-spiro- 1^{\prime} - 3^{\prime}-hydroxyiminoindane-2^{\prime}-one 23.-Following a standard method, ${ }^{37}$ the diketone $\mathbf{1 7}$ ($0.22 \mathrm{~g}, 0.827 \mathrm{mmol}$) gave the oxime $\mathbf{2 3}(185 \mathrm{mg}, 80 \%)$ as needles, m.p. $190^{\circ} \mathrm{C}$ (decomp.) (from aq. EtOH); $R_{\mathrm{f}}\left[\mathrm{CHCl}_{3}-\mathrm{MeOH}\right.$ (9:1)] 0.60; $v_{\max }(\mathrm{Nujol}) / \mathrm{cm}^{-1} 3510,3250,2880,1725$ (sat. $\mathrm{C}=\mathrm{O}$), $1580,1080,950$ and $920 ; \delta_{H}\left(\mathrm{CDCl}_{3}\right) 8.51\left(1 \mathrm{H}, \mathrm{d}, J 7.5,4^{\prime}-\mathrm{H}\right)$, $8.09(1 \mathrm{H}, \mathrm{d}, J 7.5), 7.55-7.35(2 \mathrm{H}, \mathrm{m}), 4.55(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH})$, 2.91-2.58 ($4 \mathrm{H}, 2 \times \mathrm{br}$ d) and 2.17-1.24 ($10 \mathrm{H}, \mathrm{m}$), with signals also at $7.95(\mathrm{~d}, J 7.5)$ and 7.75 (d, $J 7.5$) suggesting the presence of $c a .10 \%$ of another oxime (Found: $\mathbf{M}^{+}, 281.1403$. $\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{NO}_{2}$ requires $\mathrm{M}, 281.1416$); $m / z 281$ ($32 \%, \mathrm{M}^{+}$), 264 (100) and 236 (70).

1,2-Dihydro-3-oxoisoindole-1-spiro-2'-tricyclo[3.3.1.1 ${ }^{3.7}$]decane 24.-The α-ketooxime 23 ($185 \mathrm{mg}, 0.658 \mathrm{mmol}$) was added to cold PPA (10.1 g) and the mixture was heated rapidly to $130^{\circ} \mathrm{C}$, with evolution of a gas. After 20 min the mixture was poured onto ice (100 g) and extracted with dichloromethane $\left(3 \times 40 \mathrm{~cm}^{3}\right)$. The extracts were washed with brine (30 ml), dried $\left(\mathrm{MgSO}_{4}\right)$, and evaporated under reduced pressure. Chromatography [TLC; $\mathrm{CHCl}_{3}-\mathrm{MeOH}$ (19:1)] gave the isooxindole 24 ($56 \mathrm{mg}, 34 \%$), $R_{\mathrm{f}}\left[\mathrm{CHCl}_{3}-\mathrm{MeOH}\right.$ (19:1)] 0.40; $v_{\text {max }}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) / \mathrm{cm}^{-1} 3365(\mathrm{NH}), 3180,2890,1700(\mathrm{C}=\mathrm{O}), 1595$, 1350 and $890 ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right), 8.09\left(1 \mathrm{H}\right.$, dd, $J 7.6$ and $\left.1.1,4^{\prime}-\mathrm{H}\right)$, 7.88-7.25 ($3 \mathrm{H}, \mathrm{m}$), $6.64(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH}), 3.18(1 \mathrm{H}, \mathrm{br} \mathrm{s}), 2.70$ $\left(1 \mathrm{H}, \mathrm{br}\right.$ s) and $2.41-1.38(12 \mathrm{H}, \mathrm{m}) ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 164.98(\mathrm{C}=\mathrm{O})$,
$140.10(\mathrm{C}), 132.27(\mathrm{CH}), 129.11(\mathrm{C}), 128.16(3 \times \mathrm{CH}), 126.34$, 124.28, $52.00(\mathrm{C}), 47.24(\mathrm{CH}), 43.74\left(5 \times \mathrm{CH}_{2}\right), 39.47,37.55$, $36.13,29.80,29.10(3 \times \mathrm{CH}), 29.80,28.78$ and 28.62 (Found: $\mathrm{M}^{+}, 253.1448 . \mathrm{C}_{17} \mathrm{H}_{19} \mathrm{NO}$ requires $\mathrm{M}, 253.1467$).

2-(α-Nitrobenzylidene)tricyclo[3.3.1.1 ${ }^{3.7}$]decane 26.-A solution of nitromethyleneadamantane $\mathbf{2 5}^{20}(100 \mathrm{mg}, 0.52$ mmol) in THF ($3 \mathrm{~cm}^{3}$) was added dropwise during 10 min to a stirred solution of phenyllithium $\left[0.29 \mathrm{~cm}^{3}\right.$ of a $1.9 \mathrm{~mol} \mathrm{dm}^{-3}$ solution in cyclohexane- $\mathrm{Et}_{2} \mathrm{O}$ (70:30)] under nitrogen at $-78^{\circ} \mathrm{C}$. After 40 min the red-brown solution was quenched by the addition of acetic acid $\left(2.5 \mathrm{~cm}^{3}\right)$ in dichloromethane ($7.5 \mathrm{~cm}^{3}$), allowed to warm to room temperature during 15 \min, then poured into a mixture of dichloromethane $\left(30 \mathrm{~cm}^{3}\right)$ and water $\left(50 \mathrm{~cm}^{3}\right)$. The mixture was extracted with dichloromethane, the extracts were washed several times with water, dried $\left(\mathrm{MgSO}_{4}\right)$, and evaporated, and the residue was chromatographed [TLC; hexane- $\mathrm{Et}_{2} \mathrm{O}$ (15:1)] to give what seems likely to be the contra-Michael product, nitroalkene 26, or conceivably the homoadamantene isomer, 4-nitro-5-phenyltricyclo[4.3.1.1 ${ }^{3.8}$]undec-4-ene ($26.6 \mathrm{mg}, 19 \%$) as plates, m.p. $108.5-109.5^{\circ} \mathrm{C}$ (from hexane) (Found: $\mathrm{C}, 75.9 ; \mathrm{H}, 7.1 ; \mathrm{N}, 5.0$. $\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{NO}_{2}$ requires $\mathrm{C}, 75.8 ; \mathrm{H}, 7.1 ; \mathrm{N}, 5.2 \%$); R_{f} [hexane$\left.\mathrm{Et}_{2} \mathrm{O}(10: 1)\right] 0.28 ; v_{\max }\left(\mathrm{CCl}_{4}\right) / \mathrm{cm}^{-1} 1.495\left(\mathrm{NO}_{2}\right)$ and 1355 $\left(\mathrm{NO}_{2}\right) ; \delta_{\mathbf{H}}\left(\mathrm{CDCl}_{3}\right) 7.47-7.32(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 3.02(1 \mathrm{H}$, br s, $\mathrm{CHC}=\mathrm{C}$ cis to NO_{2} or $\left.3-\mathrm{H}\right), 2.57(1 \mathrm{H}$, br s, $\mathrm{CH}=\mathrm{C}$ trans to NO_{2} or $\left.6-\mathrm{H}\right)$ and $1.99-1.61\left(12 \mathrm{H}, \mathrm{m}, \mathrm{CH}\right.$ and $\left.\mathrm{CH}_{2}\right)$; $\delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 148.7,131.8,129.2,129.5,128.7,127.8,39.0,38.9$, $27.5,36.3,33.9$ and $33.8 ; m / z 269\left(8 \%, \mathrm{M}^{+}\right), 239(11, \mathrm{M}-\mathrm{NO})$ and $223\left(100, \mathrm{M}-\mathrm{NO}_{2}\right)$; and recovered nitromethyleneadamantane 25 ($22.5 \mathrm{mg}, 23 \%$).

Triphenylaluminium.-Following the procedure of Eisch and Kaska, ${ }^{38}$ diphenylmercury $(7.34 \mathrm{~g}, 20.7 \mathrm{mmol}$, pretreated with hydrazine hydrate ${ }^{39}$) and aluminium turnings ($3.78 \mathrm{~g}, 140$ mmol, freshly cut into short lengths) in xylene ($30 \mathrm{~cm}^{3}$) were degassed and heated to reflux $\left(140^{\circ} \mathrm{C}\right)$ under nitrogen for $2-3 \mathrm{~h}$. Droplets of mercury appeared after $c a .10 \mathrm{~min}$ at reflux. On cooling to room temperature triphenylaluminium crystallised as needles, and was redissolved on heating to $100^{\circ} \mathrm{C}$. Attempts to transfer the triphenylaluminium solution by syringe led to decomposition, and all subsequent transfers were done with double-tipped needles into degassed solvents. The triphenylaluminium could be kept under nitrogen for 1-2 days, but in most cases was prepared directly before use.

2-Nitromethyl-2-phenyltricyclo[3.3.1.1 ${ }^{3,7}$]decane 27.-Following the procedure of Pecunioso and Menicagli, ${ }^{21}$ a degassed solution of nitromethyleneadamantane $25(1.0 \mathrm{~g}, 5.18 \mathrm{mmol})$ in hexane ($50 \mathrm{~cm}^{3}$) was added slowly by double-tipped needle during 10 min to a suspension of triphenylaluminium [$25 \mathrm{~cm}^{3}$ of a ca. $0.36 \mathrm{~mol} \mathrm{dm}{ }^{-3}$ solution in xylene, freshly prepared from diphenylmercury ($7.71 \mathrm{~g}, 21.7 \mathrm{mmol}$) and aluminium turnings $(2.45 \mathrm{~g}, 90.7 \mathrm{mmol}), 9 \mathrm{mmol}]$ in degassed hexane $\left(15 \mathrm{~cm}^{3}\right)$ under nitrogen at $0^{\circ} \mathrm{C}$, immediately giving an orange suspension. The colour faded to yellow as the addition was completed, and the mixture was stirred at $0^{\circ} \mathrm{C}$ for 80 min . Diethyl ether ($30 \mathrm{~cm}^{3}$) was added, giving a pale yellow solution, which was quenched by the addition of cold $\left(0^{\circ} \mathrm{C}\right)$, dil. hydrochloric acid $\left(150 \mathrm{~cm}^{3}\right.$; $0.1 \mathrm{~mol} \mathrm{dm}{ }^{-3}$). The mixture was extracted with diethyl ether, and the extracts were washed with brine, dried $\left(\mathrm{MgSO}_{4}\right)$, and evaporated to give a pale yellow solid (1.46 g). Dry-column flash chromatography ${ }^{32}$ [hexane $\left.-\mathrm{Et}_{2} \mathrm{O}(25: 1)\right]$ to remove the last of the xylene gave the nitroalkane $27(1.27 \mathrm{~g}, 91 \%)$ as needles, m.p. $126-128.5^{\circ} \mathrm{C}$ (from hexane) (Found: $\mathrm{C}, 74.6 ; \mathrm{H}, 7.7 ; \mathrm{N}, 5.1$. $\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{NO}_{2}$ requires C, $75.2 ; \mathrm{H}, 7.8 ; \mathrm{N}, 5.2 \%$); R_{f} [hexane- $\mathrm{Et}_{2} \mathrm{O}$ (10:1)] 0.22; $v_{\text {max }}\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 1545\left(\mathrm{NO}_{2}\right)$ and $1375\left(\mathrm{NO}_{2}\right)$; $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 7.45-7.20(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 4.72\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{NO}_{2}\right)$,
$2.67(2 \mathrm{H}$, br s, $2 \times \mathrm{CH} \alpha$ to CPh$)$ and $2.21-1.50(12 \mathrm{H}, \mathrm{m}, \mathrm{CH}$ and CH_{2}) (Found: M^{+}, 271.1581. $\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{NO}_{2}$ requires M , 271.1572); $m / z 271\left(14 \%, \mathrm{M}^{+}\right), 241$ ($9, \mathrm{M}-\mathrm{NO}$), 225 (14 , $\left.\mathbf{M}-\mathrm{NO}_{2}\right)$ and $211\left(100, \mathbf{M}-\mathrm{CH}_{2} \mathrm{NO}_{2}\right)$. Repetition of the reaction in the presence of diethyl ether (1 mol equiv. per $\mathrm{Ph}_{3} \mathrm{Al}$), and heating at $60^{\circ} \mathrm{C}$ for $1 \mathrm{~h},{ }^{21}$ gave only recovered nitromethyleneadamantane 25 and no trace of the phenyl addition product.

Cyclisation of 2-Nitroethylbenzene to Oxindole.-Sodium methoxide ($0.62 \mathrm{~cm}^{3}$ of a $1.70 \mathrm{~mol} \mathrm{dm}^{-3}$ solution in methanol, 1.05 mmol) was added to 2-nitroethylbenzene ${ }^{40}$ ($100 \mathrm{mg}, 0.66$ mmol) in diethyl ether ($5 \mathrm{~cm}^{3}$) and the mixture was stirred at room temperature for 30 min . The solvent was evaporated off and the residue was suspended in dichloromethane $\left(10 \mathrm{~cm}^{3}\right)$ at $0^{\circ} \mathrm{C}$. The solid dissolved on addition of trifluoroacetic anhydride ($0.28 \mathrm{~cm}^{3}, 1.98 \mathrm{mmol}$) and the solution was kept for 5 min . Iron(iII) chloride ($0.32 \mathrm{~g}, 1.98 \mathrm{mmol}$) was added in a single portion, and the brown-black mixture was stirred at $0^{\circ} \mathrm{C}$ for 5 h , then quenched and worked up with water. Chromatography of the crude product (54 mg) [TLC; hexane- $\mathrm{Et}_{2} \mathrm{O}(2: 1)$] gave recovered 2 -nitroethylbenzene ($19 \mathrm{mg}, 19 \%$) and oxindole (2 $\mathrm{mg}, c a .2 \%$), identical (TLC, ${ }^{1} \mathrm{H}$ NMR) with an authentic sample. The recovery of oxindole was inefficient: the crude product was a mixture of starting material and oxindole in the ratio $c a .2: 1\left({ }^{1} \mathrm{H}\right.$ NMR).

2-Phenyltricyclo[3.3.1.1 ${ }^{3.7}$]decane-2-carbonitrile Oxide 28.Sodium methoxide $\left(1.37 \mathrm{~cm}^{3}\right.$ of a $0.59 \mathrm{~mol} \mathrm{dm}{ }^{-3}$ solution in methanol, 0.81 mmol) was added to a solution of the nitromethyl(phenyl)adamantane $27(200 \mathrm{mg}, 0.74 \mathrm{mmol})$ in diethyl ether ($20 \mathrm{~cm}^{3}$), the mixture was stirred at room temperature for 40 min , and the solvent was evaporated off. The residue was suspended in dichloromethane $\left(10 \mathrm{~cm}^{3}\right)$, acetyl chloride ($0.10 \mathrm{~cm}^{3}, 1.5 \mathrm{mmol}$) was added, and the solution was stirred at room temperature for 40 min . A cloudy precipitate appeared within several minutes. The reaction mixture was quenched with brine and extracted with dichloromethane, the extracts were dried $\left(\mathrm{MgSO}_{4}\right)$, and the solvent was evaporated off. The residue was separated by dry-column flash chromatography, ${ }^{32}$ [hexane- $\left.\mathrm{Et}_{2} \mathrm{O}(12: 1)\right]$ to give the nitrile oxide $28(124 \mathrm{mg}, 66 \%)$ as prisms, m.p. $149-151.5^{\circ} \mathrm{C}$ [from light petroleum (b.p. $40-60^{\circ} \mathrm{C}$)] (Found: C, $80.4 ; \mathrm{H}, 7.55$; N, 5.6. $\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{NO}$ requires $\mathrm{C}, 80.6 ; \mathrm{H}, 7.55 ; \mathrm{N}, 5.6 \%$; R_{f} [hexane $-\mathrm{Et}_{2} \mathrm{O}$ (3:1)] $0.35 ; v_{\text {max }}\left(\mathrm{CCl}_{4}\right) / \mathrm{cm}^{-1} \quad 2275$ (CNO); $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 7.45-7.24(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 2.76(2 \mathrm{H}, \mathrm{br} \mathrm{s}, 2 \times \mathrm{CH} x$ to CPH$), 2.35-2.28(2 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{CH})$ and $2.04-1.59(10 \mathrm{H}, \mathrm{m}$, CH and $\left.\mathrm{CH}_{2}\right) ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 139.3$ (ipso-C), 129.1 and 126.0 (o-, $m-\mathrm{C}$), 127.6 ($p-\mathrm{C}$), 47.4 (C-2), 37.2 (C-6), 35.5 (CNO), 34.1 (C-1 and -3$), 31.5(\mathrm{C}-4,-9,-8$ and -10$), 26.7$ and $26.4(\mathrm{C}-5$ and -7$)$; $m / z 237(6 \%, \mathrm{M}-\mathrm{O}), 225(3, \mathrm{M}-\mathrm{CO})$ and 223 (100, M - NO); recovered nitromethyl(phenyl)adamantane (14 mg , 6%), and a mixture, R_{f} [hexane- $\left.\mathrm{Et}_{2} \mathrm{O}(1: 3)\right] 0.26$, of the O-acetyl hydroxamate (ca. $14 \mathrm{mg}, 6 \%$) (see below), and a product (ca. $7 \mathrm{mg}, 4 \%$), tentatively identified as the corresponding isocyanate, $v_{\text {max }}\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 2250(\mathrm{NCO}) ; m / z 253$, 225 and 211.

O-Acetyl 2-Phenyltricyclo[3.3.1.1 ${ }^{3.7}$]decane-2-carbohydrox-amate.-Following the procedure of Dignam et al., ${ }^{41}$ the nitrile oxide ${ }^{28}(124 \mathrm{mg}, 0.49 \mathrm{mmol})$, acetic acid $\left(0.28 \mathrm{~cm}^{3}, 4.9 \mathrm{mmol}\right)$, and sodium acetate ($8 \mathrm{mg}, 0.10 \mathrm{mmol}$) in diethyl ether $\left(15 \mathrm{~cm}^{3}\right)$ were stirred at room temperature for 17 h , diluted with water ($50 \mathrm{~cm}^{3}$), and extracted with ethyl acetate. The extracts were washed with brine, dried $\left(\mathrm{MgSO}_{4}\right)$, and evaporated ($<40^{\circ} \mathrm{C}$), and the residue was dried in vacuo over potassium hydroxide, to give the O-acetyl hydroxamate ($131 \mathrm{mg}, 85 \%$) as needles, m.p. $145^{\circ} \mathrm{C}$ (decomp.) (from $\mathrm{EtOAc} ;<60^{\circ} \mathrm{C}$); R_{f} [hexane- $\mathrm{Et}_{2} \mathrm{O}$
(1:3)] 0.26; $v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 3350(\mathrm{NH}), 1790(\mathrm{C}=\mathrm{O})$ and 1695 $(\mathrm{C}=\mathrm{O}) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 9.20(1 \mathrm{H}, \mathrm{s}, \mathrm{NH}), 7.48(2 \mathrm{H}, \mathrm{dd}, J 7.3$ and $1.4, o-\mathrm{Ph}), 7.35(2 \mathrm{H}, \mathrm{t}, J 7.5, m-\mathrm{Ph}), 7.26-7.20(1 \mathrm{H}, \mathrm{m}, p-\mathrm{Ph})$, 2.96 ($2 \mathrm{H}, \mathrm{br} \mathrm{s}, 2 \times \mathrm{CH} \alpha$ to CPh), 2.26-2.15 ($2 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{CH}$), $2.09(3 \mathrm{H}, \mathrm{s}, \mathrm{COMe})$ and $1.94-1.60\left(10 \mathrm{H}, \mathrm{m}, \mathrm{CH}\right.$ and $\left.\mathrm{CH}_{2}\right)$; $\delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 173.7(\mathrm{CO}), 169.0(\mathrm{CO}), 141.4$ (ipso-C), 128.9 and 126.6 ($o-, m-\mathrm{C}$), 126.9 ($p-\mathrm{C}$), 55.7 (C-2), 37.4 (C-6), 34.7 and 32.6 ($\mathrm{C}-4,-9,-8$ and -10), 31.6 ($\mathrm{C}-1$ and -3), 27.2 and 26.5 ($\mathrm{C}-5$ and -7) and 18.3 (Me) (Found: $\mathrm{M}^{+}-\mathrm{HOAc}, 253.1462 . \mathrm{C}_{17} \mathrm{H}_{19} \mathrm{NO}$ requires $m / z 253.1466$); $m / z 253(8 \%$, M - HOAc) and 211 ($100, \mathrm{C}_{16} \mathrm{H}_{19}$). The reaction was repeated (a) with conc. sulphuric acid ${ }^{42}$ (3 drops) in place of the sodium acetate to give, after 3 h at room temperature, the O-acetyl hydroxamate (100%), and (b) with acetic anhydride ${ }^{42}$ (100 mol equiv., freshly distilled) in diethyl ether at reflux for 4 h , to give the O-acetyl hydroxamate (100%).

Attempted Cyclisation of O -Acetyl 2-Phenyltricyclo[3.3.1.1 ${ }^{3.7}$]decane-2-carbohydroxamate.-Following the method of Cherest and Lusinchi, ${ }^{25}$ acetic acid ($9 \mathrm{~mm}^{3}, 0.16$ mmol) and iron(III) chloride ($52 \mathrm{mg}, 0.32 \mathrm{mmol}$) were added to a solution of the O-acetyl hydroxamate ($50 \mathrm{mg}, 0.16 \mathrm{mmol}$) in dichloromethane $\left(8 \mathrm{~cm}^{3}\right)$ and the mixture was stirred vigorously at room temperature for 17 h . Aqueous work-up gave the hydroxamic acid ($37 \mathrm{mg}, 85 \%$) as an orange oil, identical (TLC, IR, ${ }^{1} \mathrm{H}$ NMR) with the sample prepared below. A similar reaction in the absence of acetic acid gave the oxindole 8 ($c a$. $1 \mathrm{mg},<1 \%$) as a pale yellow oil (Found: $\mathrm{M}^{+}, 253.1465$. $\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{NO}$ requires $\mathrm{M}, 253.1467$), identical (TLC) with an authentic sample, Other variations were no more successful.

2-Phenyltricyclo[3.3.1.1 ${ }^{3.7}$] decane-2-carbohydroxamic Acid.-The nitrile oxide $28(82 \mathrm{mg}, 0.32 \mathrm{mmol})$, acetone $\left(5 \mathrm{~cm}^{3}\right)$, and dil. sulphuric acid ($2 \mathrm{~mol} \mathrm{dm}{ }^{-3} ; 3 \mathrm{~cm}^{3}$) were heated at $75^{\circ} \mathrm{C}$ for 22 h . The acetone was evaporated off, and the residue was diluted with water and extracted with diethyl ether. The extracts were washed with brine, dried (MgSO_{4}), and evaporated to give the title hydroxamic acid ($49 \mathrm{mg}, 56 \%$) as needles, m.p. $163-164^{\circ} \mathrm{C}$ (from hexane- $\mathrm{Et}_{2} \mathrm{O}$); R_{f} [hexane$\mathrm{Et}_{2} \mathrm{O}$ (1:5)] 0.20 (streaks); $v_{\text {max }}\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 3440$ and 3220 $(\mathrm{OH}$ and NH$)$ and $1650(\mathrm{C}=\mathrm{O}) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 8.2(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH}$ or NH$), 7.9(1 \mathrm{H}, \mathrm{brs}, \mathrm{NH}$ or OH$), 7.42(2 \mathrm{H}, \mathrm{d}, J 7.3, o-\mathrm{Ph}), 7.33$ $(2 \mathrm{H}, \mathrm{d}, J 7.5, m-\mathrm{Ph}), 7.23(1 \mathrm{H}, \mathrm{t}, J 7.1, p-\mathrm{Ph}), 2.87(2 \mathrm{H}, \mathrm{s}$, $2 \times \mathrm{CH} \times$ to CPh$), 2.10-2.04(2 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{CH})$ and $1.90-1.57$ $\left(10 \mathrm{H}, \mathrm{m}, \mathrm{CH}\right.$ and CH_{2}) (Found: $\mathrm{M}^{+}-\mathrm{NHOH}, 239.1435$. $\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{NO}$ requires $\left.m / z, 239.1436\right) ; m / z 239(35 \%, \mathrm{M}-$ $\mathrm{NHOH})$ and $211\left(100, \mathrm{C}_{16} \mathrm{H}_{19}\right)$.

O-Methyl 2-Phenyltricyclo[3.3.1.1 ${ }^{3.7}$]decane-2-carbohydroxamate 29.-The hydroxamic acid ($44 \mathrm{mg}, 0.16 \mathrm{mmol}$), iodomethane ($0.10 \mathrm{~cm}^{3}, 1.6 \mathrm{mmol}$), and sodium carbonate ($36 \mathrm{mg}, 0.34 \mathrm{mmol}$) were stirred in methanol $\left(15 \mathrm{~cm}^{3}\right)$ at room temperature for 70 h . The methanol was evaporated off, and the residue was diluted with water, acidified with dil. hydrochloric acid ($3 \mathrm{~mol} \mathrm{dm}{ }^{-3}$), and extracted with dichloromethane. The extracts were washed successively with aq. sodium thiosulphate and brine, dried $\left(\mathrm{MgSO}_{4}\right)$, and evaporated to give the O-methyl hydroxamate $29(43 \mathrm{mg}, 93 \%)$ as needles, m.p. $210.5-211.5^{\circ} \mathrm{C}$ (from hexane- $\mathrm{Et}_{2} \mathrm{O}$) (Found: C, 75.4; H, 8.2; N, $4.7 \% ; \mathrm{M}$, 285.1724. $\mathrm{C}_{18} \mathrm{H}_{23} \mathrm{NO}_{2}$ requires C, $75.8 ; \mathrm{H}, 8.1 ; \mathrm{N}, 4.9 \%$); M, 285.1729); R_{f} [hexane- $\left.\mathrm{Et}_{2} \mathrm{O}(1: 5)\right] 0.24 ; v_{\text {max }}\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1}$ $3420(\mathrm{NH})$ and $1685(\mathrm{C}=\mathrm{O}) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 8.42(1 \mathrm{H}, \mathrm{s}, \mathrm{NH}), 7.44$ $(2 \mathrm{H}, \mathrm{d}, J 7.4, o-\mathrm{Ph}), 7.32(2 \mathrm{H}, \mathrm{t}, J 7.6, m-\mathrm{Ph}), 7.19(1 \mathrm{H}, \mathrm{t}, J 7.2, p$ $\mathrm{Ph}), 3.51$ ($3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}$), $2.88(2 \mathrm{H}, \mathrm{br} \mathrm{s}, 2 \times \mathrm{CH} \times$ to CPh), $2.15(2 \mathrm{H}, \mathrm{br}$ d, $J 12.6,2 \times \mathrm{CH}), 1.92-1.68(8 \mathrm{H}, \mathrm{m}, \mathrm{CH}$ and $\left.\mathrm{CH}_{2}\right)$ and $1.60(2 \mathrm{H}$, br d, $J 12.6,2 \times \mathrm{CH}) ; m / z 285(0.3 \%$, M^{+}), 254 (1, M - OMe), $239(2, \mathrm{M}-\mathrm{NHOMe})$ and 211 ($100, \mathrm{C}_{16} \mathrm{H}_{19}$).

The synthesis was repeated, starting from the nitro compound 27 ($309 \mathrm{mg}, 1.14 \mathrm{mmol}$), using identical conditions to those described above but without purification of the crude products, to give the O-methyl hydroxamate 29 ($223 \mathrm{mg}, 69 \%$).

2,3-Dihydro-1-methoxy-2-oxoindole-3-spiro-2'-tricyclo-

[3.3.1.1 ${ }^{3.7}$]decane 30.-t-Butyl hypochlorite $\left(26 \mathrm{~mm}^{3}, 0.23\right.$ mmol) was added to a solution of the O-methyl hydroxamate $29(63 \mathrm{mg}, 0.22 \mathrm{mmol})$ in dichloromethane ($8 \mathrm{~cm}^{3}$) and the mixture was stirred at room temperature in the dark for 16 h , after which time all the starting material had been consumed (TLC). The solvent was evaporated off and the residue, taken up in nitromethane ($3 \mathrm{~cm}^{3}$), was added to a refluxing suspension of zinc acetate ($202 \mathrm{mg}, 1.10 \mathrm{mmol}$, powdered and dried at $175^{\circ} \mathrm{C}$ for $4 \mathrm{~h}^{43}$) in nitromethane ($3 \mathrm{~cm}^{3}$). After 10 min the mixture was filtered through Celite, and the filter was washed with ethyl acetate. The solvent was evaporated off, the residue was dissolved in dichloromethane and filtered through silica, and the solvent was evaporated off to give the methoxyoxindole $30(53 \mathrm{mg}, 85 \%)$ as prisms, m.p. $148-151^{\circ} \mathrm{C}$ (from hexane) (Found: C, 76.1; H, 7.3; N, 4.8\%; M, 283.1570. $\mathrm{C}_{18} \mathrm{H}_{21} \mathrm{NO}_{2}$ requires $\mathrm{C}, 76.3 ; \mathrm{H}, 7.5 ; \mathrm{N}, 4.9 \% ; \mathrm{M}, 283.1572) ; R_{\mathrm{f}}\left[\right.$ hexane $-\mathrm{Et}_{2} \mathrm{O}$ (1:5)] 0.67; $v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 1710(\mathrm{C}=\mathrm{O}) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 7.78$ $(1 \mathrm{H}, \mathrm{d}, J 7.7$, ArH o to C), $7.29(1 \mathrm{H}, \mathrm{dt}, J 1.0$ and 7.7 , ArH p to C), $7.03(1 \mathrm{H}, \mathrm{dt}, J 1.3$ and $7.7, \mathrm{ArH} p$ to N), $6.98(1 \mathrm{H}, \mathrm{d}, J 7.7$, $\operatorname{ArH} o$ to N$), 3.98(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.04(2 \mathrm{H}, \mathrm{brd}, J 13,2 \times \mathrm{CH}$ α to CAr), $2.54(2 \mathrm{H}, \mathrm{br}$ d, $J 13,2 \times \mathrm{CH}), 2.10-1.67(8 \mathrm{H}, \mathrm{m}$, CH and CH_{2}) and $1.56(2 \mathrm{H}, \mathrm{br} \mathrm{d}, J 13,2 \times \mathrm{CH}) ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right)$ 174.1 (CO), 139.7 and 130.2 (C ipso to N, C), 128.3, 127.7, 121.7 and 106.8 ($4 \times \mathrm{Ar}-\mathrm{C}$), 63.1 (OMe), 52.3 (C-2), 39.5 (C-6), 33.6 ($\mathrm{C}-1$ and -3), 33.4 and $31.8(\mathrm{C}-4,-9$, and -8 and -10), 27.1 and 26.9 (C-5 and -7); m/z $283\left(44 \%, \mathrm{M}^{+}\right), 255(55, \mathrm{M}-\mathrm{CO})$ and 224 ($100, \mathrm{M}-\mathrm{MeOCO}$).

5-Chloro-2,3-dihydro-1-methoxy-2-oxoindole-3-spiro- 2^{\prime}-tricyclo[3.3.1.1 ${ }^{3,7}$]decane 31.-t-Butyl hypochlorite ($0.06 \mathrm{~cm}^{3}$, 0.52 mmol) was added to a solution of the O-methyl hydroxamate $29(124 \mathrm{mg}, 0.43 \mathrm{mmol})$ in dichloromethane (10 cm^{3}) and the mixture was stirred at room temperature for 50 min, giving incomplete chlorination (TLC). More t-butyl hypochlorite ($0.06 \mathrm{~cm}^{3}, 0.52 \mathrm{mmol}$) was added and the mixture was kept at $40^{\circ} \mathrm{C}$ for 70 min , after which time all the starting material had been consumed (TLC). The solvent was evaporated off, and a solution of silver(I) carbonate (240 mg , 0.87 mmol) in trifluoroacetic acid ($3 \mathrm{~cm}^{3}$) was added to the residue at $0^{\circ} \mathrm{C}$, immediately giving a yellow precipitate. After 15 min at room temperature the reaction was worked up as described above, and the product was chromatographed [TLC; hexane- $\mathrm{Et}_{2} \mathrm{O}$ (1:2)] to give an inseparable mixture, R_{f} [hexane$\left.\mathrm{Et}_{2} \mathrm{O}(1: 5)\right] 0.67$, of the methoxyoxindole $30(50 \mathrm{mg}, 41 \%)$, identical (TLC, IR, ${ }^{1} \mathrm{H}$ NMR, MX) with the pure sample prepared above, and the chloro(methoxy)oxindole $31(19 \mathrm{mg}$, $14 \%), \quad v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} \quad 1710 \quad(\mathrm{C}=\mathrm{O}) ; \quad \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) \quad$ (by subtraction of the ${ }^{1} \mathrm{H}$ NMR spectrum of the pure methoxyoxindole 30 from that of the mixture) $7.75(1 \mathrm{H}, \mathrm{d}, J 1.9, \mathrm{ArH} o$ to C), $7.36-7.26(1 \mathrm{H}, \mathrm{m}, \mathrm{ArH} p$ to C), $6.90(1 \mathrm{H}, \mathrm{d}, J 8.2, \mathrm{ArH}$ o to N), 3.97 ($3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}$), $3.08-3.01(2 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{CH} \times$ to CAr) , 2.57-2.40 ($2 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{CH}$) and 2.09-1.50 $(10 \mathrm{H}, \mathrm{m}$, CH and CH_{2}) [Found: $\mathrm{M}^{+}\left({ }^{35} \mathrm{Cl}\right)$, 317.1200. $\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{ClNO}_{2}$ requires $\mathrm{M}\left({ }^{(35} \mathrm{Cl}\right), 317.1183 \mathrm{j}$; $\mathrm{m} / \mathrm{z}\left(\right.$ for $\left.{ }^{35} \mathrm{Cl}\right) 317\left(9 \%, \mathrm{M}^{+}\right)$, 289 (14, M - CO) 258 ($16, \mathrm{M}-\mathrm{MeOCO}$).

The Spirooxindole 8.-Sodium amalgam (6%; powdered; $0.4 \mathrm{~g}, 1 \mathrm{mmol}$) was stirred with the methoxyoxindole 30 (14.2 $\mathrm{mg}, 0.052 \mathrm{mmol})$ in a mixture of methanol $\left(2 \mathrm{~cm}^{3}\right)$ and diethyl ether $\left(2 \mathrm{~cm}^{3}\right)$ under nitrogen at $0^{\circ} \mathrm{C}$ for 50 min . Starting material was still detectable (TLC), so more sodium amalgam $(0.4 \mathrm{~g})$ was added and the mixture was stirred for a further 30
min. The mixture was filtered through Celite and then through silica, the filters were washed with diethyl ether, the solvent was evaporated off, and the residue was chromatographed (TLC; hexane- $\mathrm{Et}_{2} \mathrm{O}$) to give the oxindole 8 ($12.4 \mathrm{mg}, ~ ' 102 \%$ '), R_{f} [hexane- $\mathrm{Et}_{2} \mathrm{O}$ (1:5)] 0.36, identical (TLC, ${ }^{1} \mathrm{H}$ NMR) with an authentic sample. ${ }^{3}$

Reduction of a Mixture of the Methoxyoxindole $\mathbf{3 0}$ and the Chloro(methoxy)oxindole 31.-A similar reduction to that described above, but on the mixture of oxindoles (32 mg), and in the presence of disodium hydrogen phosphate (75 mg), which is reported to speed up the reduction (but which made little difference here) gave, after chromatography [TLC; hexane$\mathrm{Et}_{2} \mathrm{O}(2: 1)$, eluting six times], the adamantanespirooxindole 8 (18.6 mg), identical (TLC, ${ }^{1} \mathrm{H}$ NMR) with an authentic sample, and 5 -chloro-2,3-dihydro-2-oxoindole-3-spiro-2'-tricyclo $\left[3.3 .1 .1^{3,7}\right]$ decane (6.6 mg), $R_{\mathrm{f}}\left[\right.$ hexane- $\left.\mathrm{Et}_{2} \mathrm{O}(1: 5)\right] 0.30$; $v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 3430(\mathrm{NH}), 1700(\mathrm{C}=\mathrm{O})$ and $1620(\mathrm{C}=\mathrm{O})$; $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 8.22(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH}), 7.73(1 \mathrm{H}, \mathrm{d}, J 1.9, \mathrm{ArH} o$ to C$)$, $7.19(1 \mathrm{H}, \mathrm{dd}, J 8.2$ and 1.9 , ArH p to C), $6.80(1 \mathrm{H}, \mathrm{d}, J 8.2, \mathrm{ArH} o$ to N$), 3.02(2 \mathrm{H}, \mathrm{brd}, J 13,2 \times \mathrm{CH} \propto$ to CAr$), 2.50(2 \mathrm{H}, \mathrm{br} \mathrm{d}$, $J 11,2 \times \mathrm{CH}), 2.12-1.71\left(8 \mathrm{H}, \mathrm{m}, \mathrm{CH}\right.$ and $\left.\mathrm{CH}_{2}\right)$ and 1.56 $(2 \mathrm{H}$, br d, $J 13,2 \times \mathrm{CH})$ [Found: $\mathrm{M}^{+}\left({ }^{35} \mathrm{C}\right)$, 287.1093. $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{ClNO}$ requires $\mathrm{M}\left({ }^{35} \mathrm{Cl}\right.$), 287.1077]; m / z (for ${ }^{35} \mathrm{Cl}$) 287 ($100 \%, \mathrm{M}^{+}$) and 167 (45). The total yield of oxindoles from the N-methoxyoxindoles was $c a .88 \%$.

4-Nitromethylene-2-oxatricyclo[3.3.1.1 $\left.{ }^{3,7}\right]$ decane 33.-The oxaadamantanone $30{ }^{5}(200 \mathrm{mg}, 1.31 \mathrm{mmol})$ and 1,2-diaminoethane ($2 \mathrm{mg}, 0.03 \mathrm{mmol}$) in nitromethane ($10 \mathrm{~cm}^{3}$) were refluxed under nitrogen for 3 h . More 1,2-diaminoethane (3 mg) was added and reflux was continued for a further 3 h . The solvent was removed and the residue was flash chromatographed [hexane $\mathrm{Et}_{2} \mathrm{O}$ (5:1)] to give the nitromethyleneoxaadamantane 33 ($193 \mathrm{mg}, 75 \%$) ($55: 45$ trans:cis) as a pale yellow oil, R_{f} [hexane $\left.-\mathrm{Et}_{2} \mathrm{O}(1: 2)\right] 0.41 ; v_{\text {max }}\left(\mathrm{CCl}_{4}\right) / \mathrm{cm}^{-1} 1640$ and 1345 $\left(\mathrm{NO}_{2}\right) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 6.94\left(0.6 \mathrm{H}, \mathrm{s}\right.$, trans $\left.-\mathrm{CHNO}_{2}\right), 6.88(0.4 \mathrm{H}, \mathrm{s}$, cis- CHNO_{2}), $5.59(0.4 \mathrm{H}, \mathrm{d}, J 4.4$, cis-3-H), 4.17-4.06 (2.2 H , $\mathrm{m}, 1-\mathrm{H}$, trans-3-H, and trans-5-H), 2.67-2.65 ($0.4 \mathrm{H}, \mathrm{m}$, cis-5-H) and 2.40-1.72 $\left(9 \mathrm{H}, \mathrm{m}, \mathrm{CH}\right.$ and $\left.\mathrm{CH}_{2}\right)$; $\delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 157.1,156.4$ (trans:cis-C-4), 129.7, 128.9 (trans,cis- CNO_{2}), 71.7, 68.0, 67.3, 66.4 (trans,cis-C-1 and -3), 38.7, 38.3, 38.2, 37.9, 37.1, 36.9, 34.65 and 34.61 (trans,cis-C-6, -8, -9 and -10), 36.1, 30.9 (trans,cis-C-5) and 25.7 and 25.6 (trans,cis-C-7) (Found: \mathbf{M}^{+}, 195.0901. $\mathrm{C}_{10} \mathrm{H}_{13} \mathrm{NO}_{3}$ requires M, 195.0895); m/z $195\left(8 \%, \mathrm{M}^{+}\right), 178$ $(29, \mathrm{M}-\mathrm{OH}), 151\left(95, \mathrm{M}-\mathrm{H}_{2} \mathrm{NO}_{2}\right), 79\left(100, \mathrm{C}_{6} \mathrm{H}_{7}\right)$; and recovered oxaadamantanone $32(36 \mathrm{mg}, 18 \%)$.

4-Nitromethyl-4-phenyl-2-oxatricyclo[3.3.3.1 ${ }^{3,7}$]decane 34.The nitromethyleneoxaadamantane 33 ($110 \mathrm{mg}, 0.56 \mathrm{mmol}$) was added to triphenylaluminium, as described above for the adamantane series. Chromatography [TLC; hexane- $\mathrm{Et}_{2} \mathrm{O}$ (3:1) then (2:1)] gave the nitroalkane $34(25 \mathrm{mg}, 16 \%)(11: 1$ mixture of isomers at C-4), R_{f} [hexane- $\mathrm{Et}_{2} \mathrm{O}$ (1:2)] 0.35; $v_{\text {max }}\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 1550\left(\mathrm{NO}_{2}\right)$ and $1380\left(\mathrm{NO}_{2}\right) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right)$ 7.41-7.21 ($5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}$), $4.92\left(0.9 \mathrm{H}, \mathrm{d}, J 11.5, \mathrm{C}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \mathrm{NO}_{2}\right.$ major isomer), $4.86(1 \mathrm{H}, \mathrm{br} \mathrm{s}, 3-\mathrm{H}), 4.77\left(0.1 \mathrm{H}, \mathrm{d}, J 10.9, \mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \mathrm{NO}_{2}\right.$ minor isomer), $4.60\left(0.1 \mathrm{H}, \mathrm{d}, J 10.9, \mathrm{CH}_{\mathrm{A}} H_{\mathrm{B}} \mathrm{NO}_{2}\right.$ minor isomer), $4.58\left(0.9 \mathrm{H}, \mathrm{d}, J 11.5, \mathrm{CH}_{\mathrm{A}} H_{\mathrm{B}} \mathrm{NO}_{2}\right.$ major isomer), $3.92-$ $3.90(1 \mathrm{H}, \mathrm{m}, 1-\mathrm{H}), 2.59(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{CH})$ and 2.34-1.41 $(9 \mathrm{H}, \mathrm{CH}$ and CH_{2}): $\delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right)$ (for the major isomer only) 140.4 (ipsoC), 128.6 and $127.2(~ o-$ and $m-\mathrm{C}), 127.0(p-\mathrm{C}), 83.6\left(\mathrm{CH}_{2} \mathrm{NO}_{2}\right)$, 66.3 and 67.7 ($\mathrm{C}-1$ and -3), 46.3 (C-4), 36.7, 32.2, 31.5 and 31.0 (C-6, -8, -9 and -10), 33.8 (C-5) and 25.2 (C-7) (Found: M ${ }^{+}$, 273.1364. $\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{NO}_{3}$ requires $\mathrm{M}, 273.1365$); $m / z 273$ (3%, M^{+}) and $227\left(100, \mathrm{M}-\mathrm{NO}_{2}\right)$, and recovered nitromethyleneoxaadamantane 33 ($62 \mathrm{mg}, 56 \%$) (6:4 trans:cis mixture). The reaction was repeated with cooling during the addition of the
nitromethyleneadamantane, so that the external temperature fell from -10 to $-65^{\circ} \mathrm{C}$ during the addition, was kept at -65 to $-45^{\circ} \mathrm{C}$ for 3.5 h , and was then brought to $0^{\circ} \mathrm{C}$ for a further 3.5 h . Work-up and separation as described above gave recovered nitromethyleneoxaadamantane 33 (5%) and the phenyl-addition product 34 (35%) ($90: 1$ mixture of isomers at C-4 by ${ }^{1} \mathrm{HNMR}$). Crystallisation gave needles, m.p. 190 $192{ }^{\circ} \mathrm{C}$ (from hexane) (Found: C, 70.1; H, 6.75; N, 5.3. $\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{NO}_{3}$ requires $\mathrm{C}, 70.3 ; \mathrm{H}, 7.0 ; \mathrm{N}, 5.1 \%$). A COSY spectrum taken at 400 MHz in $\left[{ }^{2} \mathrm{H}_{5}\right]$ pyridine allowed the assignment of downfield signals at $\delta 3.8$ and 5.1 to the protons on C-1 and C-3, respectively, since the former was coupled to two methylene groups, whereas the latter was coupled only to one. The signal from the proton on $\mathrm{C}-3$ at $\delta 5.1$ was coupled to the AB system from the protons on $\mathrm{C}-10$ at $\delta 2.38$ and 2.19 , and by W -coupling to the proton on $\mathrm{C}-5$ at $\delta 2.58$. The latter signal was, in turn, coupled to signals at $\delta 2.19$ and 1.82 and at $\delta 1.88$ and 1.29. Since the latter pair were coupled to the proton on $\mathrm{C}-1$, they can be assigned to the protons on $\mathrm{C}-9$, and the signals at $\delta 2.19$ and 1.82 can therefore be assigned to the protons on C-6. Irradiation at either $\delta 2.38$ or $\delta 2.19$ gave 1% NOE enhancement in the doublet at $\delta 5.32$, the downfield signal from the diastereotopic pair of protons adjacent to the NO_{2} group, with no effect on the signals of the phenyl group.

Acknowledgements

We thank the SERC (R. C. M.) and The Royal Society (M. T. and J. Z.) for financial support.

References

1 C. Clarke, I. Fleming, J. M. D. Fortunak, P. T. Gallagher, M. C. Honan, A. Mann, C. O. Nübling, P. R. Raithby and J. J. Wolff, Tetrahedron, 1988, 44, 3931.
2 R. L. Autrey and F. C. Tahk, Tetrahedron, 1967, 23, 901; 1968, 24, 3337; R. S. Johnson, T. O. Lovett and T. S. Stevens, J. Chem. Soc. C, 1970, 796; G. Stork, M. E. Krafft and S. A. Biller, Tetrahedron Lett., 1987, 28, 1035; J.-K. Choi, D.-C. Ha, D. J. Hart, C.-S. Lee, S. Ramesh and S. Wu, J. Org. Chem., 1989, 54, 279; R. J. Vijn, H. Hiemstra, J. J. Kok, M. Knotter and W. N. Speckamp, Tetrahedron, 1987, 43, 5019; H. Hiemstra, R. J. Vijn and W. N. Speckamp, J. Org. Chem., 1988, 53, 3882; see also S. W. Baldwin and R. J. Doll, Tetrahedron Lett., 1979, 3275.
3 I. Fleming, M. A. Loreto, I. H. M. Wallace and J. P. Michael, J. Chem. Soc., Perkin Trans. 1, 1986, 349.
4 For similar problems with cation chemistry, see I. Ernest, Angew. Chem., Int. Ed. Engl., 1976, 15, 207.
5 R. Subramaniam and R. C. Fort, Jr., J. Org. Chem., 1984, 49, 2891.
6 J. Wolff and M. Taddei, Tetrahedron, 1986, 42, 4267; see also H. Fritz and P. Uhrhan, Justus Liebigs Ann. Chem., 1972, 763, 198.
7 R. F. Moore and S. G. P. Plant, J. Chem. Soc., 1951, 3475.
8 M. C. Honan, unpublished results.
9 K. Jones, M. Thomson and C. Wright, J. Chem. Soc., Chem. Commun., 1986, 115; C. Wright, M. Shulkind, K. Jones and M. Thompson, Tetrahedron Lett., 1987, 28, 6389; K. Jones and C. McCarthy, Tetrahedron Lett., 1989, 30, 2657; K. Jones, A. Clarke and C. McCarthy, presented at the Eleventh International Symposium on Organic Synthesis, Oxford, 1989.
10 M. M. Abelman, T. Oh and L. E. Overman, J. Org. Chem., 1987, 52, 4130; L. E. Overman, W. Earley, E. J. Jacobsen and T. Oh, Proceedings of the 1st Princess Chulabhorn Science Congress, 1987; R. J. Vijn, Ph.D. Thesis, University of Amsterdam, 1988; H. Hiemstra, F. Ya, R. J. Vijn and W. N. Speckamp, presented at the Eleventh International Symposium on Organic Synthesis, Oxford, 1989.

11 A. G. Schultz and W. Y. Fu, J. Org. Chem., 1976, 41, 1483; A. G. Schultz and I. C. Chiu, J. Chem. Soc., Chem. Commun., 1978, 29; T. Wolff and R. Waffenschmidt, J. Am. Chem. Soc., 1980, 102, 6098. 12 D. Farcasiu, Synthesis, 1972, 615.
13 J. Scharp and U. E. Wiersum, J. Chem. Soc., Chem. Commun., 1983, 629.

14 H. McNab, Chem. Soc. Rev., 1978, 7, 345; F. J. Kunz, P. Margaretha
and O. E. Polansky, Chimia, 1970, 24, 165; X. Huang, C.-C. Chan and Q.-L. Wu, Tetrahedron Lett., 1982, 23, 75.

15 See, however, R. K. Hill and G. R. Newkome, Tetrahedron, 1969, 25, 1249.

16 Y. Oikawa, H. Hirasawa and O. Yonemitsu, Chem. Pharm. Bull., 1982, 30, 3092.
17 H. Gilman and R. D. Gorsich, J. Am. Chem Soc., 1956, 78, 2217.
18 M. Calvin and R. M. Lemmon, J. Am. Chem. Soc., 1947, 69, 1232; A. Fry and M. Calvin, J. Phys. Chem., 1952, 56, 897; K. Banhoizer and H. Schmid, Helv. Chim. Acta, 1956, 39, 548; R. Louw and E. C. Kooyman, Recl. Trav. Chim. Pays-Bas, 1967, 86, 1041.

19 N. A. Jönsson and P. Moses, Acta Chem. Scand., Ser. B, 1974, 28, 225, 441.

20 D. H. R. Barton, W. B. Motherwell and S. Z. Zard, Bull. Soc. Chim. Fr., 1983, II-61.
21 A. Pecunioso and R. Menicagli, J. Org. Chem., 1988, 53, 54; 1989, 54, 2391.

22 J. M. D. Fortunak, Smith Kline Beecham, King of Prussia, Philadelphia, PA, personal communication.
23 J. Guillaumel, P. Demerseman, J.-M. Clavel, R. Royer, N. Platzer and C. Brevard, Tetrahedron, 1980, 36, 2459; J. Guillaumel, P. Demerseman, J.-M. Clavel and R. Royer, J. Heterocycl. Chem., 1980, 17, 1513.
24 M. Cherest and X. Lusinchi, Tetrahedron, 1986, 42, 3825.
25 M. Cherest and X. Lusinchi, Tetrahedron Lett., 1989, 30, 715.
26 B. C. Challis and J. A. Challis, in Comprehensive Organic Chemistry, ed. D. H. R. Barton and W. D. Ollis, Pergamon, Oxford, 1979, vol. 2, pp. 1036-1045.
27 K. Harada, E. Kaji and S. Zen, Chem. Pharm. Bull., 1980, 28, 3296.

28 T. Mukaiyama and T. Hoshino, J. Am. Chem. Soc., 1960, 82, 5339
29 Y. Kikugawa and M. Kawase, J. Am. Chem. Soc., 1984, 106, 5728; Y. Kikugawa and M. Shimada, Chem. Lett., 1987, 1771; M. Kawase, T. Kitamura and Y. Kikugawa, J. Org. Chem., 1989, 54, 3394.

30 G. E. Keck, S. Fleming, D. Nickell and P. Weider, Synth. Commun., 1979, 9, 281.
31 H. B. Henbest and A. Thomas, J. Chem. Soc., 1957, 3032.
32 L. M. Harwood, Aldrichimica Acta, 1985, 18, 25.
33 R. M. Black and G. B. Gill, J. Chem. Soc., Perkin Trans. I, 1980, 410.
34 E. K. Novitskaya, N. V. Smirnova and A. P. Skoldinov, Zh. Org. Khim., 1974, 10, 131 (Chem. Abstr., 1974, 80, 108059s).
35 J. Koo, J. Am. Chem. Soc., 1953, 75, 1891
36 E. S. Wallis and J. F. Lane, Org. React., 1946, 3, 267.
37 A. I. Vogel, A Textbook of Practical Organic Chemistry, Longmans, London, 3rd edn., 1956, p. 345; 5th edn., 1989, p. 1259.
38 J. J. Eisch and W. C. Kask a, J. Am. Chem. Soc., 1966, 88, 2976.
39 H. Gilman and M. M. Barnett, Recl. Trav. Chim. Pays-Bas, 1936, 55, 563.

40 A. K. Sinhababu and R. T. Borchardt, Tetrahedron Lett., 1983, 24, 227.

41 K. J. Dignam, A. F. Hegarty and P. L. Quain, J. Org. Chem., 1978, 43, 388.

42 C. Grundmann and H.-D. Frommeld, J. Org. Chem., 1966, 31, 157.
43 E. Ghera, J. Org. Chem., 1970, 35, 660.

Paper 0/04284F
Received 21st September 1990
Accepted 22nd October 1990

[^0]: + However. we may be overestimating this problem (see ref. 5)

